Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mouse model of Greig cephalo–polysyndactyly syndrome: the extra–toesJ mutation contains an intragenic deletion of the Gli3 gene

A Correction to this article was published on 01 August 1998

Abstract

Greig cephalopolysyndactyly syndrome (GCPS) is an autosomal dominant disorder affecting limb and craniofacial development. Recently, the human GLI3 gene has been proposed to be a candidate gene for GCPS. Here we describe the molecular characterization of extra–toes (Xt), which is a mouse model of GCPS. The Xt heterozygotes show craniofacial defects and a polydactyly phenotype similar to GCPS. We show that a deficiency of Gli3 expression in the XtJ mutant is due to a deletion within the 3′ end of the gene. Furthermore, structures affected in the mouse mutant and human syndrome were found to correlate with expression domains of Gli3 in mouse. These results strongly suggest that the deficiency of GLI3 function leads to GCPS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Greig, D.M. Oxycephaly. Edin. med. J. 33, 189–218 (1926).

    Google Scholar 

  2. McKusick, V.A. Mendelian Inheritance in Man 9th edn (Johns Hopkins University Press, Baltimore, 1990).

    Google Scholar 

  3. Gollop, L.R. & Fontes, L.R. The Greig cephalopolysyndactyly syndrome: report of a family and review of the literature. Am. J. med. Genet. 22, 59–68 (1985).

    Article  CAS  Google Scholar 

  4. Fryns, J.P., Coeck, W. & van den Berghe, H. The Greig polysyndactyly-craniofacial dysmorphism syndrome. Eur. J. Pediat. 126, 283–287 (1977).

    Article  CAS  Google Scholar 

  5. Merlob, P., Grunegaum, M. & Reisner, S.H. A newborn infant with craniofacial dysmorphism and polysyndactyly (Greig's syndrome). Acta Paediatr. Scand. 70, 275–277 (1981).

    Article  CAS  Google Scholar 

  6. Kruger, G. et al. Greig syndrome in a large kindred due to reciprocal chromosome translocation t(6;7)(q27;p13). Am. J. med. Genet. 32, 411–416 (1989).

    Article  CAS  Google Scholar 

  7. Hootnick, D. & Holmes, L.B. Familial polysyndactyly and craniofacial anomalies. Clin. Genet. 3, 128–134 (1972).

    Article  CAS  Google Scholar 

  8. Baraitser, M., Winter, R.M. & Breit, E.M. Greig cephalopolysyndactyly: report of 13 affected individuals in three families. Clin. Genet. 24, 257–265 (1983).

    Article  CAS  Google Scholar 

  9. Tommerup, N. & Nielsen, F. A familial reciprocal translocation t(3;7)(p21.1 ;p13) associated with the Greig polysyndactyly-craniofacial anomalies syndrome. Am. J. med. Genet. 16, 313–321 (1983).

    Article  CAS  Google Scholar 

  10. Wagner, K., Kroisel, P.M. & Rosenkranz, W. Molecular and cytogenetic analysis in two patients with microdeletions of 7p and Greig syndrome: hemizygosity for PGAM2 and TCRG genes. Genomics 8, 487–491 (1990).

    Article  CAS  Google Scholar 

  11. Pettigrew, A.L., Greenberg, F., Caskey, C.T. & Ledbetter, D.H. Greig syndrome associated with an interstitial deletion of 7p: confirmation of the localization of Greig syndrome to 7p13. Hum. Genet. 87, 452–456 (1991).

    CAS  PubMed  Google Scholar 

  12. Brueton, L. et al. Chromosomal localization of a developmental gene in man: direct DNA analysis demonstrates that Greig cephalopolysyndactyly maps to 7p13. Am. J. med. Genet. 31, 799–804 (1988).

    Article  CAS  Google Scholar 

  13. Drabkin, H. et al. Regional and physical mapping studies characterizing the Greig polysyndactyly 3;7 chromosome translocation, t(3;7)(p21;p13). Genomics 4, 518–529 (1989).

    Article  CAS  Google Scholar 

  14. Ruppert, J.M., Vogelstein, B., Arheden, K. & Kinzler, K.W. GLI3 encodes a 190-kilodalton protein with multiple regions of GLI similarity. Molec. Cell Biol. 10, 5408–5415 (1990).

    Article  CAS  Google Scholar 

  15. Vortkamp, A., Gessler, M. & Grzeschik, K.-H. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 352, 539–540 (1991).

    Article  CAS  Google Scholar 

  16. Kinzler, K.W., Ruppert, J.M., Signer, S.H. & Vogelstein, B. The GLI gene is a member of the Kruppel family of zinc finger proteins. Nature 332, 371–374 (1988).

    Article  CAS  Google Scholar 

  17. Ruppert, J.M. et al. The GLI-Kruppel family of human genes. Molec. Cell Biol. 8, 3104–3113 (1988).

    Article  CAS  Google Scholar 

  18. Orenic, T.V., Slusarski, D.C., Kroll, K.L. & Holmgren, R.A. Cloning and characterization of the segment polarity gene cubitus interrupts Dominant of Drosophila. Genes Dev. 4, 1053–1067 (1990).

    Article  CAS  Google Scholar 

  19. Zarkower, D. & Hodgkin, J. Molecular analysis of the C. elegans sex-determining gene tra-1: a gene encoding two zinc finger proteins. Cell 70, 237–249 (1992).

    Article  CAS  Google Scholar 

  20. Kinzler, K.W. & Vogelstein, B. The GLI gene encodes a nuclear protein which binds specific sequences in the human genome. Molec. cell Biol. 10, 634–642 (1990).

    Article  CAS  Google Scholar 

  21. Johnson, D.R. Extra-toes: a new mutant gene causing multiple abnormalities in the mouse. J. embryol. exp. Morpho. 3, 543–581 (1967).

    Google Scholar 

  22. Lyon, M.F., Morris, T., Searle, A.G. & Butler, J. Occurrences and linkage relations of the mutant ‘extra-toes’ in the mouse. Genet Res. 9, 383–385 (1967).

    Article  CAS  Google Scholar 

  23. Lyon, M.F. & Kirby, M.C. Mouse chromosome atlas. Mamm. Genome 90, 22–43 (1992).

    Google Scholar 

  24. Johnson, D.R. Brachyphalangy, an allele of extra-toes in the mouse. Genet Res. 13, 275–280 (1969).

    Article  CAS  Google Scholar 

  25. Winter, R.M. & Huson, S.M. Greig Cephalolysyndactyly Syndromes: a possible mouse homologue (Xt-Extra-toes). Am. J. med. Genet. 31, 793–798 (1988).

    Article  CAS  Google Scholar 

  26. Hinchliffe, J.R. & Johnson, D.R. The Development of the Vertebrate Limb (Clarendon Press, Oxford, 1980).

    Google Scholar 

  27. Gruss, P. & Walther, C. Pax in development. Cell 69, 719–722 (1992).

    Article  CAS  Google Scholar 

  28. Epstein, D.J., Vekemans, M. & Gros, P. splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell 67, 767–774 (1991).

    Article  CAS  Google Scholar 

  29. Hill, R.E. et al. Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991).

    Article  CAS  Google Scholar 

  30. Tassabehji, M. et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636 (1992).

    Article  CAS  Google Scholar 

  31. Baldwin, C.T., Hoth, C.F, Amos, J.A., da-Silva, E.O. & Milunsky, A. Anexonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature 355, 637–638 (1992).

    Article  CAS  Google Scholar 

  32. Morell, R., Friedman, T.B., Moeljopawiro, S., Hartono, Soewito & Asher, J.H. Jr. A frameshift mutation in the HuP2 paired domain of the probable human homolog of murine Pax-3 is responsible for Waardenburg syndrome type 1 in an Indonesian family. Hum. molec. Genet. 1, 243–247 (1992).

    Article  CAS  Google Scholar 

  33. Tassabehji, M. et al. Mutations in the PAX-3 gene causing Waardenburg syndrome type 1 and type 2. Nature Genet. 3, 26–30 (1993).

    Article  CAS  Google Scholar 

  34. Ton, C.C.T. et al. Positional cloning and characterization of a paired box- and homoeobox-containing gene from the Aniridia region. Cell 67, 1059–1074 (1991).

    Article  CAS  Google Scholar 

  35. Jordan, T. et al. The human PAX6 gene is mutated in two patients with aniridia. Nature Genetics 1, 328–332 (1992).

    Article  CAS  Google Scholar 

  36. Glaser, T., Walton, D.S. & Maas, R.L. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nature Genet. 2, 232–238 (1992).

    Article  CAS  Google Scholar 

  37. Johnson, D.R. The genetics of the skeleton (Clarendon Press, Oxford, 1986).

    Google Scholar 

  38. Hunter, C.P. & Wood, W.B. The tra-1 gene determines sexual phenotype cell-autonomously in C. elegans. Cell 63, 1193–1204 (1990).

    Article  CAS  Google Scholar 

  39. Hayasaka, I., Nakatsuka, T., Fuji, T., Naruse, I. & Oda, S.-i. Polydactyl Nagoya, Pdn: a new mutant gene in the mouse. Exp. Anim. 29, 391–395 (1980).

    Article  CAS  Google Scholar 

  40. Naruse, I. & Kameyama, Y. Prevention of genetic expression of polydactyly in heterozygotes of Polydactyly Nagoya (Pdn) mice by cytosine arabinoside. Enwron. Med. 28, 89–92 (1984).

    CAS  Google Scholar 

  41. Naruse, I. & Kameyama, Y. Prevention of manifeatation of genetic polydactyly in mice by means of exo utero surgery. Environ. Med. 33, 27–32 (1989).

    Google Scholar 

  42. Pohl, T.M., Mattei, M.-G. & Ruther, U. Evidence for allelism of the recessive insertional mutation add and the dominant mouse mutation extra-toes (Xt). Development 110, 1153–1157 (1990).

    CAS  Google Scholar 

  43. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  44. Ausubel, F.M. et al. Current protocols in molecular biology (Greene Publishing Associates & Wiley-lnterscience, New York, 1987).

    Google Scholar 

  45. Joyner, A.L., Kornberg, T., Coleman, K.G., Cox, D.R. & Matin, G.R. Expression during embryogenesis of a mouse gene with sequence homology to the Drosophila engrailed gene. Cell 43, 29–37 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, Cc., Joyner, A. A mouse model of Greig cephalo–polysyndactyly syndrome: the extra–toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 3, 241–246 (1993). https://doi.org/10.1038/ng0393-241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0393-241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing