Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly

A Corrigendum to this article was published on 29 July 2013

This article has been updated

Abstract

The genetic causes of malformations of cortical development (MCD) remain largely unknown. Here we report the discovery of multiple pathogenic missense mutations in TUBG1, DYNC1H1 and KIF2A, as well as a single germline mosaic mutation in KIF5C, in subjects with MCD. We found a frequent recurrence of mutations in DYNC1H1, implying that this gene is a major locus for unexplained MCD. We further show that the mutations in KIF5C, KIF2A and DYNC1H1 affect ATP hydrolysis, productive protein folding and microtubule binding, respectively. In addition, we show that suppression of mouse Tubg1 expression in vivo interferes with proper neuronal migration, whereas expression of altered γ-tubulin proteins in Saccharomyces cerevisiae disrupts normal microtubule behavior. Our data reinforce the importance of centrosomal and microtubule-related proteins in cortical development and strongly suggest that microtubule-dependent mitotic and postmitotic processes are major contributors to the pathogenesis of MCD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Severe MCD resulting from a germline mosaic mutation in KIF5C and analysis of mutant KIF5C ATPase activity and cellular localization.
Figure 2: Mutations in KIF2A cause posterior predominant agyria or pachygyria and compromise productive folding and cellular localization.
Figure 3: Spectrum of MCD associated with mutations in DYNC1H1 and analysis of the ability of mutant DYNC1H1 to bind to microtubules.
Figure 4: Mutations in TUBG1 cause MCD with posterior predominant pachygyria, and analysis of the effect of γ-tubulin mutations on facilitated folding.
Figure 5: TUBG1 alterations affect mitotic figures in yeast cells, and suppression of Tubg1 expression disrupts neuronal migration in the developing mouse neocortex.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

Change history

  • 28 June 2013

    In the version of this article initially published, the label "– Tub" in Figure 3d was placed incorrectly. The label should appear adjacent to the lower bracketed panels rather than adjacent to the bottom portion of the upper bracketed panels. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Caviness, V.S. Jr., Takahashi, T. & Nowakowski, R.S. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci. 18, 379–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Rakic, P. & Caviness, V.S. Jr. Cortical development: view from neurological mutants two decades later. Neuron 14, 1101–1104 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Francis, F. et al. Human disorders of cortical development: from past to present. Eur. J. Neurosci. 23, 877–893 (2006).

    Article  PubMed  Google Scholar 

  4. Guerrini, R., Dobyns, W.B. & Barkovich, A.J. Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends Neurosci. 31, 154–162 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Barkovich, A.J., Guerrini, R., Kuzniecky, R.I., Jackson, G.D. & Dobyns, W.B. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135, 1348–1369 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ostergaard, P. et al. Mutations in KIF11 cause autosomal-dominant microcephaly variably associated with congenital lymphedema and chorioretinopathy. Am. J. Hum. Genet. 90, 356–362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kousar, R. et al. Mutations in WDR62 gene in Pakistani families with autosomal recessive primary microcephaly. BMC Neurol. 11, 119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaglin, X.H. & Chelly, J. Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet. 25, 555–566 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Tischfield, M.A., Cederquist, G.Y., Gupta, M.L. Jr. & Engle, E.C. Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations. Curr. Opin. Genet. Dev. 21, 286–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Breuss, M. et al. Mutations in the β-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities. Cell Rep. 2, 1554–1562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bilgüvar, K. et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467, 207–210 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Manzini, M.C. & Walsh, C.A. What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr. Opin. Genet. Dev. 21, 333–339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Veltman, J.A. & Brunner, H.G. De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–575 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Vissers, L.E. et al. A de novo paradigm for mental retardation. Nat. Genet. 42, 1109–1112 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Li, Y. et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat. Genet. 42, 969–972 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Sindelar, C.V. & Downing, K.H. An atomic-level mechanism for activation of the kinesin molecular motors. Proc. Natl. Acad. Sci. USA 107, 4111–4116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dunn, S. et al. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J. Cell Sci. 121, 1085–1095 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Nakata, T. & Hirokawa, N. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J. Cell Biol. 131, 1039–1053 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Homma, N. et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114, 229–239 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Ramensky, V., Bork, P. & Sunyaev, S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 30, 3894–3900 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682–696 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Poirier, K. et al. Expanding the spectrum of TUBA1A-related cortical dysgenesis to polymicrogyria. Eur. J. Hum. Genet. 21, 381–385 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Harms, M.B. et al. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology 78, 1714–1720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weedon, M.N. et al. Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 89, 308–312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carter, A.P. et al. Structure and functional role of dynein's microtubule-binding domain. Science 322, 1691–1695 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibbons, I.R. et al. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J. Biol. Chem. 280, 23960–23965 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Wise, D.O., Krahe, R. & Oakley, B.R. The γ-tubulin gene family in humans. Genomics 67, 164–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Kollman, J.M., Merdes, A., Mourey, L. & Agard, D.A. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 12, 709–721 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Melki, R., Vainberg, I.E., Chow, R.L. & Cowan, N.J. Chaperonin-mediated folding of vertebrate actin-related protein and γ-tubulin. J. Cell Biol. 122, 1301–1310 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Erickson, R.P. Somatic gene mutation and human disease other than cancer: an update. Mutat. Res. 705, 96–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. de Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Dobyns, W.B. et al. Differences in the gyral pattern distinguish chromosome 17–linked and X–linked lissencephaly. Neurology 53, 270–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Tsurusaki, Y. et al. A DYNC1H1 mutation causes a dominant spinal muscular atrophy with lower extremity predominance. Neurogenetics 13, 327–332 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Willemsen, M.H. et al. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J. Med. Genet. 49, 179–183 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Higginbotham, H.R. & Gleeson, J.G. The centrosome in neuronal development. Trends Neurosci. 30, 276–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Wynshaw-Boris, A., Pramparo, T., Youn, Y.H. & Hirotsune, S. Lissencephaly: mechanistic insights from animal models and potential therapeutic strategies. Semin. Cell Dev. Biol. 21, 823–830 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanai, Y. et al. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374–6384 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harada, A. et al. Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J. Cell Biol. 141, 51–59 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Ori-McKenney, K.M. & Vallee, R.B. Neuronal migration defects in the Loa dynein mutant mouse. Neural Dev. 6, 26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Keays, D.A. et al. Mutations in α-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128, 45–57 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Poirier, K. et al. Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin α 1A (TUBA1A). Hum. Mutat. 28, 1055–1064 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Jaglin, X.H. et al. Mutations in the β-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat. Genet. 41, 746–752 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Poirier, K. et al. Mutations in the neuronal ss-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum. Mol. Genet. 19, 4462–4473 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Flicek, P. et al. Ensembl 2012. Nucleic Acids Res. 40, D84–D90 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Gao, Y., Thomas, J.O., Chow, R.L., Lee, G.H. & Cowan, N.J. A cytoplasmic chaperonin that catalyzes β-actin folding. Cell 69, 1043–1050 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Tian, G., Vainberg, I.E., Tap, W.D., Lewis, S.A. & Cowan, N.J. Specificity in chaperonin-mediated protein folding. Nature 375, 250–253 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Bernal, C., Palacin, C., Boronat, A. & Imperial, S. A colorimetric assay for the determination of 4-diphosphocytidyl-2-C-methyl-D-erythritol 4-phosphate synthase activity. Anal. Biochem. 337, 55–61 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Shelanski, M.L., Gaskin, F. & Cantor, C.R. Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. USA 70, 765–768 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and their families for their participation. We thank F.J. Fourniol, N. Levy and members of the Chelly lab for their thoughtful comments and help. We thank I. Gibbons and A. Carter (Medical Research Council Laboratory of Molecular Biology) for providing the seryl-tRNA synthetase dynein heavy chain fusion constructs used in the experiments described in this paper. A full-length cDNA encoding human KIF5C was generously provided by F.A. Stephenson (School of Pharmacy, University College London). A full-length cDNA encoding human γ-tubulin was generously provided by B.R. Oakley (Department of Molecular Biosciences, University of Kansas). We also thank members of the Cochin Hospital Cell Bank, the Centre National de Genotypage, Genoscope, the Paris Descartes Bioinformatics platforms and the Cochin Institute genomic platform for their technical and bioinformatic assistance. This work was supported by funding from INSERM, the Fondation pour la Recherche Médicale (FRM funding within the frame of the programme Equipe FRM; J.C.), the Fondation JED, the Fondation Maladies Rares, the Agence National de Recherche (ANR Blanc 1103 01, project R11039KK; ANR E-Rare-012-01, project E10107KP) and the EU-FP7 project GENECODYS, grant number 241995. This work was also supported by a grant (GM097376 to N.J.C.) from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

J.C. coordinated and instigated the study with N.J.C. K.P. and N.L. analyzed WES data and performed genetic and molecular studies. L.B. and Y.S. performed and analyzed in utero RNAi experiments. F.F. provided technical assistance for in utero RNAi experiments. N.B.-B. and R.G. coordinated collection of clinical and imaging data. D.G., E.F., F.D., C.C., M.B., D.B., B.D.B., S.N., C.G., P.P., V.d.P., J.M.P., D.L. and V.L. helped in selecting patients. S.V., B.S.P. and M.O. analyzed variations in candidate genes and screened subject DNA. G.T. and N.J.C. performed the biochemical studies. C.B. and A.A. performed the yeast studies. L.C.-P. and E.P. performed all DNA extractions from patient samples. P.N., T.H. and C.M. performed bioinformatics analysis of exome sequencing data. D.Z. coordinated the WES procedure (library generation, exome enrichment and WES). J.C. and N.J.C. drafted and finalized the manuscript with the help of K.P., N.L., L.B. and Y.S.

Corresponding authors

Correspondence to Nicholas J Cowan or Jamel Chelly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–8 (PDF 2769 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poirier, K., Lebrun, N., Broix, L. et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 45, 639–647 (2013). https://doi.org/10.1038/ng.2613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing