Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

Abstract

Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoswitchable ligand design for the optical control of neuronal nAChRs.
Figure 2: Choice of cysteine attachment sites for photoswitchable ligand conjugation.
Figure 3: Photoactivation of nAChRs with a tethered agonist.
Figure 4: Molecular model of a nAChR with a virtually tethered photoswitchable agonist.
Figure 5: Photoinhibition of nAChRs with a tethered antagonist.
Figure 6: Thermal relaxation of the photoswitchable agonist and antagonist.

Similar content being viewed by others

References

  1. Albuquerque, E. X., Pereira, E. F. R., Alkondon, M. & Rogers, S. W. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol. Rev. 89, 73–120 (2009).

    Article  CAS  Google Scholar 

  2. Kew, J. N. C. & Davies, C. H. Ion Channels: From Structure To Function 2nd edn (Oxford Univ. Press, 2010).

    Google Scholar 

  3. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    Article  CAS  Google Scholar 

  4. Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Membr. Biol. 346, 967–989 (2005).

    CAS  Google Scholar 

  5. Nowak, M. W. et al. Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells. Science 268, 439–442 (1995).

    Article  CAS  Google Scholar 

  6. Noda, M. et al. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793–797 (1982).

    Article  CAS  Google Scholar 

  7. Noda, M. et al. Structural homology of Torpedo californica acetylcholine-receptor subunits. Nature 302, 528–532 (1983).

    Article  CAS  Google Scholar 

  8. Noda, M. et al. Primary structures of beta-subunit and delta-subunit precursors of Torpedo californica acetylcholine-receptor deduced from cDNA sequences. Nature 301, 251–255 (1983).

    Article  CAS  Google Scholar 

  9. Taly, A., Corringer, P-J., Guedin, D., Lestage, P. & Changeux, J-P. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Discov. 8, 733–750 (2009).

    Article  CAS  Google Scholar 

  10. Kramer, R. H., Fortin, D. L. & Trauner, D. New photochemical tools for controlling neuronal activity. Curr. Opin. Neurobiol. 19, 544–552 (2009).

    Article  CAS  Google Scholar 

  11. Fehrentz, T., Schönberger, M. & Trauner, D. Optochemical genetics. Angew. Chem. Int. Ed. http://dx.doi.org/10.1002/anie.201103236 (in the press).

  12. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R. H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    Article  CAS  Google Scholar 

  13. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    Article  CAS  Google Scholar 

  14. Fortin, D. L. et al. Optogenetic photochemical control of designer K+ channels in mammalian neurons. J. Neurophysiol. 106, 488–496 (2011).

    Article  CAS  Google Scholar 

  15. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    Article  CAS  Google Scholar 

  16. Mourot, A. et al. Probing the reorganization of the nicotinic acetylcholine receptor during desensitization by time-resolved covalent labeling using [3H]AC5, a photoactivatable agonist. Mol. Pharmacol. 69, 452–461 (2006).

    Article  CAS  Google Scholar 

  17. Hunt, R. & Renshaw, R. R. Some effects of derivatives of betaine amide and of choline ethers on the autonomic nervous system. J. Pharmacol. Exp. Ther. 35, 99–128 (1929).

    CAS  Google Scholar 

  18. Wong, K. C. & Long, J. P. Nicotinic and muscarinic activity of phenacyl and phenylalkyl trimethylamines. J. Pharmacol. Exp. Ther. 137, 70–75 (1962).

    CAS  PubMed  Google Scholar 

  19. Gotti, C. et al. 4-Oxystilbene compounds are selective ligands for neuronal nicotinic Gk alpha-Bungarotoxin receptors. Br. J. Pharmacol. 124, 1197–1206 (1998).

    Article  CAS  Google Scholar 

  20. Celie, P. H. N. et al. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41, 907–914 (2004).

    Article  CAS  Google Scholar 

  21. Le Novère, N., Grutter, T. & Changeux, J-P. Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. Proc. Natl Acad. Sci. USA 99, 3210–3215 (2002).

    Article  Google Scholar 

  22. Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001).

    Article  CAS  Google Scholar 

  23. Hansen, S. B. et al. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J. 24, 3635–3646 (2005).

    Article  CAS  Google Scholar 

  24. Chavez-Noriega, L. E. et al. Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors ha2b2, ha2b4, ha3b2, ha3b4, ha4b2, ha4b4 and ha7 expressed in Xenopus oocytes. J. Pharmacol. Exp. Ther. 280, 346–356 (1997).

    CAS  PubMed  Google Scholar 

  25. Gotti, C., Zoli, M. & Clementi, F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol. Sci. 27, 482–491 (2006).

    Article  CAS  Google Scholar 

  26. Nishimura, N. et al. Thermal cis-to-trans isomerization of substituted azobenzenes II. Substituent and solvent effects. Bull. Chem. Soc. Jpn 49, 1381–1387(1976).

    Article  CAS  Google Scholar 

  27. Pozhidaeva, N., Cormier, M. E., Chaudhari, A. & Woolley, G. A. Reversible photocontrol of peptide helix content: adjusting thermal stability of the cis state. Bioconjug. Chem. 15, 1297–1303 (2004).

    Article  CAS  Google Scholar 

  28. Bartels, E., Wassermann, N. H. & Erlanger, B. F. Photochromic activators of the acetylcholine receptor. Proc. Natl Acad. Sci. USA 68, 1820–1823 (1971).

    Article  CAS  Google Scholar 

  29. Lester, H. A., Krouse, M. E., Nass, M. M., Wassermann, N. H. & Erlanger, B. F. A covalently bound photoisomerizable agonist: comparison with reversibly bound agonists at Electrophorus electroplaques. J. Gen. Physiol. 75, 207–232 (1980).

    Article  CAS  Google Scholar 

  30. Barrantes, F. J. Modulation of acetylcholine receptor states by thiol modification. Biochemistry 19, 2957–2965 (1980).

    Article  CAS  Google Scholar 

  31. Cox, R. N., Kawai, M., Karlin, A. & Brandt, P. W. Voltage fluctuations at the frog sartorius motor endplate produced by a covalently attached activator. J. Membr. Biol. 51, 145–159 (1979).

    Article  CAS  Google Scholar 

  32. Chabala, L. D. & Lester, H. A. Activation of acetylcholine receptor channels by covalently bound agonists in cultured rat myoballs. J. Physiol. 379, 83–108 (1986).

    Article  CAS  Google Scholar 

  33. Gorostiza, P. et al. Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc. Natl Acad. Sci. USA 104, 10865–10870 (2007).

    Article  CAS  Google Scholar 

  34. Sadovski, O., Beharry, A. A., Zhang, F. Z. & Woolley, G. A. Spectral tuning of azobenzene photoswitches for biological applications. Angew. Chem. Int. Ed. 48, 1484–1486 (2009).

    Article  CAS  Google Scholar 

  35. Mourot, A. et al. Tuning photochromic ion channel blockers. ACS Chem. Neurosci. 2, 536–543 (2011).

    Article  CAS  Google Scholar 

  36. Corringer, P-J. et al. Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J. Physiol. 588, 565–572 (2010).

    Article  CAS  Google Scholar 

  37. Bocquet, N. et al. A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445, 116–119 (2007).

    Article  CAS  Google Scholar 

  38. Hilf, R. J. C. & Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452, 375–379 (2008).

    Article  CAS  Google Scholar 

  39. Law, R. J., Henchman, R. H. & McCammon, J. A. A gating mechanism proposed from a simulation of a human alpha7 nicotinic acetylcholine receptor. Proc. Natl Acad. Sci. USA 102, 6813–6818 (2005).

    Article  CAS  Google Scholar 

  40. Sullivan, D. A. & Cohen, J. B. Mapping the agonist binding site of the nicotinic acetylcholine receptor. Orientation requirements for activation by covalent agonist. J. Biol. Chem. 275, 12651–12660 (2000).

    Article  CAS  Google Scholar 

  41. Hibbs, R. E. & Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474, 54–60 (2011).

    Article  CAS  Google Scholar 

  42. Langmead, C. J., Watson, J. & Reavill, C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther. 117, 232–243 (2008).

    Article  CAS  Google Scholar 

  43. Dani, J. A. & Bertrand, D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699–729 (2007).

    Article  CAS  Google Scholar 

  44. Aravanis, A. M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  Google Scholar 

  45. Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  46. Mourot, A., Bamberg, E. & Rettinger, J. Agonist- and competitive antagonist-induced movement of loop 5 on the alpha subunit of the neuronal alpha4beta4 nicotinic acetylcholine receptor. J. Neurochem. 105, 413–424 (2008).

    Article  CAS  Google Scholar 

  47. Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article  CAS  Google Scholar 

  48. Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V. & Mee, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comput. Aided Mol. Des. 11, 425–445 (1997).

    Article  CAS  Google Scholar 

  49. Baxter, C. A., Murray, C. W., Clark, D. E., Westhead, D. R. & Eldridge, M. D. Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins: Struct., Funct., Bioinf. 33, 367–382 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for the work was provided by the Nanomedicine Development Center for the Optical Control of Biological Function PN2EY018241 (D.T., R.H.K.), The European Research Commission Advanced Grant (D.T.) and the Deutsche Forschungsgemeinschaft SFB 749 (D.T.).

Author information

Authors and Affiliations

Authors

Contributions

M.R.B., A.M., R.H.K. and D.T. designed the research. M.R.B. and J.Z.Y. synthesized the ligands. I.T., A.M. and B.G. performed the research and analysed the data. I.T., M.R.B. and D.T. co-wrote the paper.

Corresponding authors

Correspondence to Richard H. Kramer or Dirk Trauner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1249 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tochitsky, I., Banghart, M., Mourot, A. et al. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors. Nature Chem 4, 105–111 (2012). https://doi.org/10.1038/nchem.1234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing