Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton

Abstract

Regulation of the actin cytoskeleton by microtubules is mediated by the Rho family GTPases. However, the molecular mechanisms that link microtubule dynamics to Rho GTPases have not, as yet, been identified. Here we show that the Rho guanine nucleotide exchange factor (GEF)-H1 is regulated by an interaction with microtubules. GEF-H1 mutants that are deficient in microtubule binding have higher activity levels than microtubule–bound forms. These mutants also induce Rho-dependent changes in cell morphology and actin organization. Furthermore, drug-induced microtubule depolymerization induces changes in cell morphology and gene expression that are similar to the changes induced by the expression of active forms of GEF-H1. Furthermore, these effects are inhibited by dominant-negative versions of GEF-H1. Thus, GEF-H1 links changes in microtubule integrity to Rho-dependent regulation of the actin cytoskeleton.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GEF-H1 constructs and their localization.
Figure 2: Changes in cell morphology and actin organization induced by the expression of GEF-H1 constructs.
Figure 3: The in vitro guanine nucleotide exchange activity of GEF-H1.
Figure 4: Activation of Rho by GEF-H1 constructs in vivo.
Figure 5: The effect of microtubule depolymerization on SRE activation and cell shape.
Figure 6: A model for the regulation of GEF-H1 activity by microtubules.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Vasiliev, J. M. et al. Effect of colcemid on the locomotory behaviour of fibroblasts. J. Embryol. Exp. Morphol. 24, 625–640 (1970).

    CAS  PubMed  Google Scholar 

  2. Bershadsky, A. D., Vaisberg, E. A. & Vasiliev, J. M. Pseudopodial activity at the active edge of migrating fibroblast is decreased after drug-induced microtubule depolymerization. Cell Motil. Cytoskeleton 19, 152–158 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Liao, G., Nagasaki, T. & Gundersen, G. G. Low concentrations of nocodazole interfere with fibroblast locomotion without significantly affecting microtubule level: implications for the role of dynamic microtubules in cell locomotion. J. Cell Sci. 108, 3473–3483 (1995).

    CAS  PubMed  Google Scholar 

  4. Danowski, B. A. Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. J. Cell Sci. 93, 255–266 (1989).

    CAS  PubMed  Google Scholar 

  5. Wittmann, T. & Waterman-Storer, C. M. Cell motility: can Rho GTPases and microtubules point the way? J. Cell Sci. 114, 3795–3803 (2001).

    CAS  PubMed  Google Scholar 

  6. Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biol. 1, 45–50 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Enomoto, T. Microtubule disruption induces the formation of actin stress fibres and focal adhesions in cultured cells: possible involvement of the rho signal cascade. Cell Struct. Funct. 21, 317–326 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, B. P., Chrzanowska-Wodnicka, M. & Burridge, K. Microtubule depolymerization induces stress fibres, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhes. Commun. 5, 249–255 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Ren, X. D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ren, Y., Li, R., Zheng, Y. & Busch, H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J. Biol. Chem. 273, 34954–34960 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Glaven, J. A., Whitehead, I., Bagrodia, S., Kay, R. & Cerione, R. A. The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signalling pathways in cells. J. Biol. Chem. 274, 2279–2285 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. van Horck, F. P., Ahmadian, M. R., Haeusler, L. C., Moolenaar, W. H. & Kranenburg, O. Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. J. Biol. Chem. 276, 4948–4956 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Schultz, D. C., Friedman, J. R. & Rauscher, F. J. III. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2α subunit of NuRD. Genes Dev. 15, 428–443 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Olson, K. R., McIntosh, J. R. & Olmsted, J. B. Analysis of MAP 4 function in living cells using green fluorescent protein (GFP) chimeras. J. Cell Biol. 130, 639–650 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Bulinski, J. C., Richards, J. E. & Piperno, G. Posttranslational modifications of α tubulin: detyrosination and acetylation differentiate populations of interphase microtubules in cultured cells. J. Cell Biol. 106, 1213–1220 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Cook, T. A., Nagasaki, T. & Gundersen, G. G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol. 141, 175–185 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sterpetti, P. et al. Activation of the Lbc Rho exchange factor proto-oncogene by truncation of an extended C terminus that regulates transformation and targeting. Mol. Cell. Biol. 19, 1334–1345 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mira, J. P., Benard, V., Groffen, J., Sanders, L. C. & Knaus, U. G. Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc. Natl Acad. Sci. USA 97, 185–189 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Welsh, C. F. et al. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nature Cell Biol. 3, 950–957 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Benard, V., Bohl, B. P. & Bokoch, G. M. Characterization of rac and cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274, 13198–13204 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Hill, C. S., Wynne, J. & Treisman, R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81, 1159–1170 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Hart, M. J. et al. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13. Science 280, 2112–2114 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Fukuhara, S., Murga, C., Zohar, M., Igishi, T. & Gutkind, J. S. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J. Biol. Chem. 274, 5868–5879 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Glaven, J. A., Whitehead, I. P., Nomanbhoy, T., Kay, R. & Cerione, R. A. Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein. J. Biol. Chem. 271, 27374–27381 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Mandato, C. A., Benink, H. A. & Bement, W. M. Microtubule–actomyosin interactions in cortical flow and cytokinesis. Cell Motil. Cytoskeleton 45, 87–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Drechsel, D. N., Hyman, A. A., Hall, A. & Glotzer, M. A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr. Biol. 7, 12–23 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. O'Connell, C. B., Wheatley, S. P., Ahmed, S. & Wang, Y. L. The small GTP-binding protein rho regulates cortical activities in cultured cells during division. J. Cell Biol. 144, 305–313 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ishikawa, K. et al. Prediction of the coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res. 5, 169–176 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. King, C. C. et al. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J. Biol. Chem. 275, 41201–41209 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Downward, J. Measurement of nucleotide exchange and hydrolysis activities in immunoprecipitates. Methods Enzymol. 255, 110–117 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to C. Waterman-Storer and T. Wittmann for helpful discussions, to B. Bohl for help in preparation of recombinant proteins, and to B. Fowler for assistance with preparation of GEF-H1 mutants. This work was supported by a United States Public Health Service grant GM39434 to G.M.B., an Arthritis Foundation Postdoctoral Fellowship to M.K., and Fellowship DAMD17-98-1-8151 from the United States Army Breast Cancer Research Program to F.T.Z.

This is TSRI manuscript number 14852.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. Bokoch.

Supplementary information

Figure S1

Cos-1 cells were transfected with SRE-luciferase and LacZ reporter plasmids and varying amounts of GEF-H1 construct lacking DH and PH domains (GEFH1delDHPH). (PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krendel, M., Zenke, F. & Bokoch, G. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4, 294–301 (2002). https://doi.org/10.1038/ncb773

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing