Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48

Abstract

Endoplasmic reticulum (ER)-associated protein degradation by the ubiquitin–proteasome system requires the dislocation of substrates from the ER into the cytosol. It has been speculated that a functional ubiquitin proteasome pathway is not only essential for proteolysis, but also for the preceding export step. Here, we show that short ubiquitin chains synthesized on proteolytic substrates are not sufficient to complete dislocation; the size of the chain seems to be a critical determinant. Moreover, our results suggest that the AAA proteins of the 26S proteasome are not directly involved in substrate export. Instead, a related AAA complex Cdc48, is required for ER-associated protein degradation upstream of the proteasome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of polyubiquitination at the ER membrane blocks retrograde transport of a soluble ER degradation substrate.
Figure 2: The AAA-ATPase Rpt4 is not required for the dislocation of CPY*.
Figure 3: Ubiquitination of substrates of low molecular weight is not sufficient to complete dislocation of CPY*.
Figure 4: Cdc48, Ufd1 and Npl4 are required for efficient degradation of ER proteins.
Figure 5: Polyubiquitinated CPY* is membrane-associated in ufd1-1 cells, but soluble in proteasomal mutants.

Similar content being viewed by others

References

  1. Sommer, T. & Wolf, D. H. Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J. 11, 1227–1233 (1997).

    Article  CAS  Google Scholar 

  2. Kopito, R. R. ER quality control: the cytoplasmic connection. Cell 88, 427–430 (1997).

    Article  CAS  Google Scholar 

  3. Bonifacino, J. S. & Weissman, A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell. Dev. Biol. 14, 19–57 (1998).

    Article  CAS  Google Scholar 

  4. Plemper, R. K. & Wolf, D. H. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24, 266–270 (1999).

    Article  CAS  Google Scholar 

  5. Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).

    Article  CAS  Google Scholar 

  6. Plemper, R. K., Bohmler, S., Bordallo, J., Sommer, T. & Wolf, D. H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388, 891–895 (1997).

    Article  CAS  Google Scholar 

  7. Pilon, M., Schekman, R. & Römisch, K. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J. 16, 4540–4548 (1997).

    Article  CAS  Google Scholar 

  8. Biederer, T., Volkwein, C. & Sommer, T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278, 1806–1808 (1997).

    Article  CAS  Google Scholar 

  9. Mayer, T. U., Braun, T. & Jentsch, S. Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J. 17, 3251–3257 (1998).

    Article  CAS  Google Scholar 

  10. Bordallo, J., Plemper, R. K., Finger, A. & Wolf, D. H. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9, 209–222 (1998).

    Article  CAS  Google Scholar 

  11. Yu, H., Kaung, G., Kobayashi, S. & Kopito, R. R. Cytosolic degradation of T-cell receptor α-chains by the proteasome. J. Biol. Chem. 272, 20800–20804 (1997).

    Article  CAS  Google Scholar 

  12. Chillaron J. & Haas I. G. Dissociation from BiP and retrotranslocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activity. Mol. Biol. Cell. 11, 217–226 (2000).

    Article  CAS  Google Scholar 

  13. Yu H. & Kopito R. R. The role of multiubiquitination in dislocation and degradation of the α-subunit of the T cell antigen receptor. J. Biol. Chem. 274, 36852–36858 (1999).

    Article  CAS  Google Scholar 

  14. de Virgilio M., Weninger H. & Ivessa N. E. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J. Biol. Chem. 273, 9734–9743 (1998).

    Article  CAS  Google Scholar 

  15. Shamu, C. E., Story, C. M., Rapoport, T. A. & Ploegh, H. L. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J. Cell Biol. 147, 45–58 (1999).

    Article  CAS  Google Scholar 

  16. Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol. 3, 24–29 (2001).

    Article  CAS  Google Scholar 

  17. Deak, P. M. & Wolf, D. H. Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J. Biol. Chem. 276, 10663–10669 (2001).

    Article  CAS  Google Scholar 

  18. Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273, 1725–1728 (1996).

    Article  CAS  Google Scholar 

  19. Friedlander, R., Jarosch, E., Urban, J., Volkwein, C. & Sommer, T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nature Cell Biol. 2, 379–384 (2000).

    Article  CAS  Google Scholar 

  20. Finley, D. et al. Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol. Cell. Biol. 14, 5501–5509 (1994).

    Article  CAS  Google Scholar 

  21. Heinemeyer. W., Kleinschmidt, J. A., Saidowsky, J., Escher, C. & Wolf, D. H. Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J. 10, 555–562 (1991).

    Article  CAS  Google Scholar 

  22. Heinemeyer, W., Fischer, M., Krimmer, T., Stachon, U. & Wolf, D. H. The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J. Biol. Chem. 272, 25200–25209 (1997).

    Article  CAS  Google Scholar 

  23. Rubin, D. M., Glickman, M. H., Larsen, C. N., Dhruvakumar, S. & Finley, D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 17, 4909–4919 (1998).

    Article  CAS  Google Scholar 

  24. Kohler, A., et al. The axial channel of the proteasome core particle is gated by the Rpt2 Atpase and controls both substrate entry and product release. Mol. Cell 7, 1143–1152 (2001).

    Article  CAS  Google Scholar 

  25. Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).

    Article  CAS  Google Scholar 

  26. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).

    Article  CAS  Google Scholar 

  27. Madeo, F., Frohlich, E. & Frohlich, K. U. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139, 729–734 (1997).

    Article  CAS  Google Scholar 

  28. Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).

    Article  CAS  Google Scholar 

  29. Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).

    Article  CAS  Google Scholar 

  30. Rouiller, I., Butel, V. M., Latterich, M., Milligan, R. A. & Wilson-Kubalek, E. M. A major conformational change in p97 AAA-ATPase upon ATP binding. Mol. Cell 6, 1485–1490 (2000).

    Article  CAS  Google Scholar 

  31. Dai, R. M. & Li, C.-C. H. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin–proteasome degradation. Nature Cell Biol. 3, 740–744 (2001).

    Article  CAS  Google Scholar 

  32. Ausubel, F. M., et al. Current Protocols in Molecular Biology, John Wiley and Sons, New York, USA (1989).

    Google Scholar 

  33. Walter, J., Urban, J., Volkwein, C. & Sommer, T. Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. EMBO J. 20, 3124–3131 (2001).

    Article  CAS  Google Scholar 

  34. Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D. H. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J. 15, 753–763 (1996).

    Article  CAS  Google Scholar 

  35. Hitchcock A. L., et al. The conserved npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol. Biol. Cell 12, 3226–3241 (2001).

    Article  CAS  Google Scholar 

  36. Mori, K. et al. A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins. EMBO J. 11, 2583–2593 (1992).

    Article  CAS  Google Scholar 

  37. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E.S. Johnson, P. Silver, K.-U. Fröhlich, and T.A. Rapoport for the generous gifts of yeast strains and plasmids. We thank the Sommer group for helpful comments on the manuscript. This work was partially supported by grants from the Deutsche Forschungs Gemeinschaft and the Deutsch-Israelische Projektkooperation (DIP) to T.S. and D.H.W. The Marie Curie Training and Mobility of Researchers program of the European Community and the Helmholtz society provided fellowships for E.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarosch, E., Taxis, C., Volkwein, C. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4, 134–139 (2002). https://doi.org/10.1038/ncb746

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing