Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis

Abstract

The final cytokinesis event involves severing of the connecting intercellular bridge (ICB) between daughter cells. FIP3-positive recycling endosomes (FIP3 endosomes) and ESCRT complexes have been implicated in mediating the final stages of cytokinesis. Here we analyse the spatiotemporal dynamics of the actin cytoskeleton, FIP3-endosome fusion and ESCRT-III localization during cytokinesis to show that the ICB narrows by a FIP3-endosome-mediated secondary ingression, whereas the ESCRT-III complex is needed only for the last scission step of cytokinesis. We characterize the role of FIP3 endosomes during cytokinesis to demonstrate that FIP3 endosomes deliver SCAMP2/3 and p50RhoGAP to the ICB during late telophase, proteins required for the formation of the secondary ingression. We also show that the FIP3-endosome-induced secondary ingression is required for the recruitment of the ESCRT-III complex to the abscission site. Finally, we characterize a FIP3-endosome-dependent regulation of the ICB cortical actin network through the delivery of p50RhoGAP. These results provide a framework for the coordinated efforts of actin, FIP3 endosomes and the ESCRTs to regulate cytokinesis and abscission.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatiotemporal distribution of FIP3 endosomes, RAB8 endosomes, CEP55 and ESCRT complexes during cytokinesis.
Figure 2: The secondary ingression forms before the recruitment of CHMP4B.
Figure 3: Clearance of microtubules from the ICB is required for secondary ingression.
Figure 4: SCAMP1, 2 and 3 localize to the ICB during cytokinesis and their localization is dependent on FIP3 endosomes.
Figure 5: SCAMP2 and SCAMP3 are required for successful completion of cytokinesis.
Figure 6: Localization of p50RhoGAP during cytokinesis.
Figure 7: FIP3-mediated p50RhoGAP and SCAMP2/3 delivery is required for actin depolymerization during late telophase.
Figure 8: FIP3-mediated SCAMP2/3 and p50RhoGAP delivery recruits CHMP4B to the secondary ingression and abscission site.

Similar content being viewed by others

References

  1. Eggert, U. S., Mitchison, T. J. & Field, C. M. Animal cytokinesis: from parts list to mechanisms. Annu. Rev. Biochem. 75, 543–566 (2006).

    Article  CAS  Google Scholar 

  2. Schiel, J. A. et al. Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. J. Cell Sci. 124, 1411–1424 (2011).

    Article  CAS  Google Scholar 

  3. Elia, N., Sougrat, R., Spurlin, T. A., Hurley, J. H. & Lippincott-Schwartz, J. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl Acad. Sci. USA 108, 4846–4851 (2011).

    Article  CAS  Google Scholar 

  4. Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616–1620 (2011).

    Article  CAS  Google Scholar 

  5. Baluska, F., Menzel, D. & Barlow, P. W. Cytokinesis in plant and animal cells: endosomes ‘shut the door’. Dev. Biol. 294, 1–10 (2006).

    Article  CAS  Google Scholar 

  6. Fielding, A. B. et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J. 24, 3389–3399 (2005).

    Article  CAS  Google Scholar 

  7. Wilson, G. M. et al. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol. Biol. Cell 16, 849–860 (2005).

    Article  CAS  Google Scholar 

  8. Carlton, J. G., Agromayor, M. & Martin-Serrano, J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc. Natl Acad. Sci. USA 105, 10541–10546 (2008).

    Article  CAS  Google Scholar 

  9. Lindas, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J. & Bernander, R. A unique cell division machinery in the Archaea. Proc. Natl Acad. Sci. USA 105, 18942–18946 (2008).

    Article  CAS  Google Scholar 

  10. Morita, E. et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 26, 4215–4227 (2007).

    Article  CAS  Google Scholar 

  11. Horgan, C. P., Walsh, M., Zurawski, T. H. & McCaffrey, M. W. Rab11-FIP3 localises to a Rab11-positive pericentrosomal compartment during interphase and to the cleavage furrow during cytokinesis. Biochem. Biophys. Res. Commun. 319, 83–94 (2004).

    Article  CAS  Google Scholar 

  12. Simon, G. C. et al. Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO J. 27, 1791–1803 (2008).

    Article  CAS  Google Scholar 

  13. Gromley, A. et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123, 75–87 (2005).

    Article  CAS  Google Scholar 

  14. Montagnac, G. et al. ARF6 Interacts with JIP4 to control a motor switchmechanism regulating endosome traffic in cytokinesis. Curr. Biol. 19, 184–195 (2009).

    Article  CAS  Google Scholar 

  15. Carlton, J. G., Caballe, A., Agromayor, M., Kloc, M. & Martin-Serrano, J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336, 220–225 (2012).

    Article  CAS  Google Scholar 

  16. Morita, E. et al. Human ESCRT-III and VPS4 proteins are required forcentrosome and spindle maintenance. Proc. Natl Acad. Sci. USA 107, 12889–12894 (2010).

    Article  CAS  Google Scholar 

  17. Aoh, Q. L., Castle, A. M., Hubbard, C. H., Katsumata, O. & Castle, J. D. SCAMP3 negatively regulates epidermal growth factor receptor degradation and promotes receptor recycling. Mol. Biol. Cell 20, 1816–1832 (2009).

    Article  CAS  Google Scholar 

  18. Falguieres, T., Castle, D. & Gruenberg, J. Regulation of the MVB pathway by SCAMP3. Traffic 13, 131–142 (2012).

    Article  CAS  Google Scholar 

  19. Mota, L. J., Ramsden, A. E., Liu, M., Castle, J. D. & Holden, D. W. SCAMP3 is a component of the Salmonella-induced tubular network and reveals an interaction between bacterial effectors and post-Golgi trafficking. Cell. Microbiol. 11, 1236–1253 (2009).

    Article  CAS  Google Scholar 

  20. Castle, A. & Castle, D. Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1–4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface. J. Cell Sci. 118, 3769–3780 (2005).

    Article  CAS  Google Scholar 

  21. Liao, H. et al. Nonredundant function of secretory carrier membrane protein isoforms in dense core vesicle exocytosis. Am. J. Physiol. Cell Physiol. 294, C797–C809 (2008).

    Article  CAS  Google Scholar 

  22. Liu, L. et al. SCAMP2 interacts with Arf6 and phospholipase D1 and links their function to exocytotic fusion pore formation in PC12 cells. Mol. Biol. Cell 16, 4463–4472 (2005).

    Article  CAS  Google Scholar 

  23. Zhang, J. & Castle, D. Regulation of fusion pore closure and compound exocytosis in neuroendocrine PC12 cells by SCAMP1. Traffic 12, 600–614 (2011).

    Article  CAS  Google Scholar 

  24. Byers, B. & Abramson, D. H. Cytokinesis in HeLa: post-telophase delay and microtubule-associated motility. Protoplasma 66, 413–435 (1968).

    Article  CAS  Google Scholar 

  25. Sirokmany, G. et al. Sec14 homology domain targets p50RhoGAP to endosomes and provides a link between Rab and Rho GTPases. J. Biol. Chem. 281, 6096–6105 (2006).

    Article  CAS  Google Scholar 

  26. Zhou, Y. T., Chew, L. L., Lin, S. C. & Low, B. C. The BNIP-2 and Cdc42GAPhomology (BCH) domain of p50RhoGAP/Cdc42GAP sequesters RhoA from inactivation by the adjacent GTPase-activating protein domain. Mol. Biol. Cell 21, 3232–3246 (2010).

    Article  CAS  Google Scholar 

  27. Pollard, T. D. Mechanics of cytokinesis in eukaryotes. Curr. Opin. Cell Biol. 22, 50–56 (2010).

    Article  CAS  Google Scholar 

  28. Robinson, D. N. & Cooley, L. Stable intercellular bridges in development: the cytoskeleton lining the tunnel. Trends Cell Biol. 6, 474–479 (1996).

    Article  CAS  Google Scholar 

  29. Burkel, B. M., von Dassow, G. & Bement, W. M. Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil. Cytoskeleton 64, 822–832 (2007).

    Article  CAS  Google Scholar 

  30. Fyfe, I., Schuh, A. L., Edwardson, J. M. & Audhya, A. Association of the endosomal sorting complex ESCRT-II with the Vps20 subunit of ESCRT-III generates a curvature-sensitive complex capable of nucleating ESCRT-III filaments. J. Biol. Chem. 286, 34262–34270 (2011).

    Article  CAS  Google Scholar 

  31. Connell, J. W., Lindon, C., Luzio, J. P. & Reid, E. Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic 10, 42–56 (2009).

    Article  CAS  Google Scholar 

  32. Demirov, D. G., Ono, A., Orenstein, J. M. & Freed, E. O. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc. Natl Acad. Sci. USA 99, 955–960 (2002).

    Article  CAS  Google Scholar 

  33. Garrus, J. E. et al. TSG101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    Article  CAS  Google Scholar 

  34. Martin-Serrano, J., Yarovoy, A., Perez-Caballero, D. & Bieniasz, P. D. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc. Natl Acad. Sci. USA 100, 12414–12419 (2003).

    Article  CAS  Google Scholar 

  35. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. Role of ESCRT-I in retroviral budding. J. Virol. 77, 4794–4804 (2003).

    Article  CAS  Google Scholar 

  36. Nickerson, D. P., West, M., Henry, R. & Odorizzi, G. Regulators of Vps4 ATPase activity at endosomes differentially influence the size and rate of formation of intralumenal vesicles. Mol. Biol. Cell 21, 1023–1032 (2010).

    Article  CAS  Google Scholar 

  37. Von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003).

    Article  CAS  Google Scholar 

  38. Sedzinski, J. et al. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature 476, 462–466 (2011).

    Article  CAS  Google Scholar 

  39. Dambournet, D. et al. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat. Cell Biol. 13, 981–988 (2011).

    Article  CAS  Google Scholar 

  40. Kouranti, I., Sachse, M., Arouche, N., Goud, B. & Echard, A. Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Curr. Biol. 16, 1719–1725 (2006).

    Article  CAS  Google Scholar 

  41. Liao, H. et al. Secretory carrier membrane protein SCAMP2 and phosphatidylinositol 4,5-bisphosphate interactions in the regulation of dense core vesicle exocytosis. Biochemistry 46, 10909–10920 (2007).

    Article  CAS  Google Scholar 

  42. Thomas, D. D., Frey, C. L., Messenger, S. W., August, B. K. & Groblewski, G. E. A role for tumor protein TPD52 phosphorylation in endo-membrane trafficking during cytokinesis. Biochem. Biophys. Res. Commun. 402, 583–587 (2010).

    Article  CAS  Google Scholar 

  43. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    Article  Google Scholar 

  44. Wessel, D. & Flugge, U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143 (1984).

    Article  CAS  Google Scholar 

  45. McCormack, A. L. et al. Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal. Chem. 69, 767–776 (1997).

    Article  CAS  Google Scholar 

  46. MacCoss, M. J., Wu, C. C. & Yates, J. R. 3rd Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal. Chem. 74, 5593–5599 (2002).

    Article  CAS  Google Scholar 

  47. Cociorva, D., Tabb, D. L. & Yates, J. R. Validation of tandem mass spectrometry database search results using DTASelect. Curr. Protoc. Bioinformatics/editorial board, Unit 13.4, http://dx.doi.org/10.1002/0471250953.bi1304s16 (2007).

  48. Brosch, M., Yu, L., Hubbard, T. & Choudhary, J. Accurate and sensitive peptide identification with Mascot Percolator. J. Proteome Res. 8, 3176–3181 (2009).

    Article  CAS  Google Scholar 

  49. Lowenthal, M. S., Howell, K. E. & Wu, C. C. Proteomic analysis of the stacked Golgi complex. Methods Mol. Biol. 432, 37–49 (2008).

    Article  CAS  Google Scholar 

  50. Glotzer, M. The molecular requirements for cytokinesis. Science 307, 1735–1739 (2005).

    Article  CAS  Google Scholar 

  51. Glotzer, M. The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat. Rev. Mol. Cell Biol. 10, 9–20 (2009).

    Article  CAS  Google Scholar 

  52. Low, S. H. et al. Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells. Dev. Cell 4, 753–759 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Pearson and C. Willenborg (University of Colorado Denver, USA) for critically reading the manuscript. We also thank J. Martin-Serrano (King’s College London, UK) for mCherry–CEP55, mCherry–TSG101 and YFP–CHMP4B; M. Geiszt (Semmelweis University, Hungary) for GFP–p50RhoGAP; C. Westlake (NCI-Frederick, USA) for RAB8 complementary DNA; A. Bresnick (Albert Einstein College of Medicine, USA) for myosin-IIA–GFP; and W. Bement (University of Wisconsin Madison, USA) for utrophin–GFP and utrophin–RFP. This work was supported in part by a grant from NIH-NIDDK (DK064380 to R.P.).

Author information

Authors and Affiliations

Authors

Contributions

J.A.S. and R.P. conceived the project and wrote the manuscript with the help of D.C. and C.C.W. Proteomic round one was performed and analysed by G.C.S. and J.W. Proteomic round two was performed and analysed by J.A.S. and J.W. Proteomic round three was performed and analysed by J.A.S. and C.Z. All remaining experiments and data analysis were performed by J.A.S. and R.P.

Corresponding author

Correspondence to Rytis Prekeris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1466 kb)

Supplementary Table 1

Supplementary Information (XLS 94 kb)

Supplementary Table 2

Supplementary Information (XLS 470 kb)

Supplementary Table 3

Supplementary Information (XLS 142 kb)

Supplementary Table 4

Supplementary Information (XLS 80 kb)

Supplementary Movie 1

Supplementary Information (WMV 481 kb)

Supplementary Movie 2

Supplementary Information (WMV 520 kb)

Supplementary Movie 3

Supplementary Information (WMV 3258 kb)

Supplementary Movie 4

Supplementary Information (WMV 1272 kb)

Supplementary Movie 5

Supplementary Information (WMV 1138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiel, J., Simon, G., Zaharris, C. et al. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat Cell Biol 14, 1068–1078 (2012). https://doi.org/10.1038/ncb2577

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2577

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing