Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells

Abstract

Transient receptor potential (TRP) cation channels are renowned for their ability to sense diverse chemical stimuli. Still, for many members of this large and heterogeneous protein family it is unclear how their activity is regulated and whether they are influenced by endogenous substances. On the other hand, steroidal compounds are increasingly recognized to have rapid effects on membrane surface receptors that often have not been identified at the molecular level. We show here that TRPM3, a divalent-permeable cation channel, is rapidly and reversibly activated by extracellular pregnenolone sulphate, a neuroactive steroid. We show that pregnenolone sulphate activates endogenous TRPM3 channels in insulin-producing β cells. Application of pregnenolone sulphate led to a rapid calcium influx and enhanced insulin secretion from pancreatic islets. Our results establish that TRPM3 is an essential component of an ionotropic steroid receptor enabling unanticipated crosstalk between steroidal and insulin-signalling endocrine systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRPM3 channels are activated by PS and nifedipine.
Figure 2: Properties and specificity of agonist-evoked currents through TRPM3 channels.
Figure 3: PS is active only from the extracellular side and monovalent cations inhibit PS-induced currents through TRPM3 channels.
Figure 4: PS activates Ca2+-permeable, outwardly rectifying channels in Ins1 cells and mouse pancreatic islet cells.
Figure 5: Analysis of TRPM3 expression in Ins1 cells and pancreatic islets.
Figure 6: Downregulation of TRPM3 induced by shRNA reduces steroid-induced Ca2+ signals.
Figure 7: PS-induced Ca2+ signals in pancreatic islet cells.
Figure 8: PS enhances insulin release from pancreatic islets.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Montell, C. The TRP superfamily of cation channels. Sci. STKE 2005, re3 (2005).

    PubMed  Google Scholar 

  2. Owsianik, G., Talavera, K., Voets, T. & Nilius, B. Permeation and selectivity of TRP channels. Annu. Rev. Physiol. 68, 685–717 (2006).

    Article  CAS  Google Scholar 

  3. Vriens, J., Nilius, B. & Vennekens, R. Herbal compounds and toxins modulating trp channels. Curr. Neuropharmacol. 6, 79–96 (2008).

    Article  CAS  Google Scholar 

  4. Hwang, S. W. et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl Acad. Sci. USA 97, 6155–6160 (2000).

    Article  CAS  Google Scholar 

  5. Watanabe, H. et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424, 434–438 (2003).

    Article  CAS  Google Scholar 

  6. Trevisani, M. et al. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc. Natl Acad. Sci. USA 104, 13519–13524 (2007).

    Article  CAS  Google Scholar 

  7. Beato, M. & Sánchez-Pacheco, A. Interaction of steroid hormone receptors with the transcription initiation complex. Endocr. Rev. 17, 587–609 (1996).

    Article  CAS  Google Scholar 

  8. Lösel, R. & Wehling, M. Nongenomic actions of steroid hormones. Nature Rev. Mol. Cell Biol. 4, 46–56 (2003).

    Article  Google Scholar 

  9. Belelli, D. & Lambert, J. J. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nature Rev. Neurosci. 6, 565–575 (2005).

    Article  CAS  Google Scholar 

  10. Gibbs, T. T., Russek, S. J. & Farb, D. H. Sulfated steroids as endogenous neuromodulators. Pharmacol. Biochem. Behav. 84, 555–567 (2006).

    Article  CAS  Google Scholar 

  11. Wu, F.-S., Gibbs, T. T. & Farb, D. H. Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol. Pharmacol. 40, 333–336 (1991).

    CAS  PubMed  Google Scholar 

  12. Jang, M., Mierke, D. F., Russek, S. J. & Farb, D. H. A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity. Proc. Natl Acad. Sci. USA 101, 8198–8203 (2004).

    Article  CAS  Google Scholar 

  13. Mameli, M., Carta, M., Partridge, L. D. & Valenzuela, C. F. Neurosteroid-induced plasticity of immature synapses via retrograde modulation of presynaptic NMDA receptors. J. Neurosci. 25, 2285–2294 (2005).

    Article  CAS  Google Scholar 

  14. Hige, T., Fujiyoshi, Y. & Takahashi, T. Neurosteroid pregnenolone sulfate enhances glutamatergic synaptic transmission by facilitating presynaptic calcium currents at the calyx of Held of immature rats. Eur. J. Neurosci. 24, 1955–1966 (2006).

    Article  Google Scholar 

  15. Mayo, W. et al. Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processes in the rat. Brain Res. 607, 324–328 (1993).

    Article  CAS  Google Scholar 

  16. Vallée, M., Mayo, W. & Le Moal, M. Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging. Brain Res. Rev. 37, 301–312 (2001).

    Article  Google Scholar 

  17. Oberwinkler, J. & Philipp, S. E. TRPM3. Handb. Exp. Pharmacol. 179, 253–267 (2007).

    Article  CAS  Google Scholar 

  18. Lee, N. et al. Expression and characterization of human transient receptor potential melastatin 3 (hTRPM3). J. Biol. Chem. 278, 20890–20897 (2003).

    Article  CAS  Google Scholar 

  19. Oberwinkler, J., Lis, A., Giehl, K. M., Flockerzi, V. & Philipp, S. E. Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J. Biol. Chem. 280, 22540–22548 (2005).

    Article  CAS  Google Scholar 

  20. Grimm, C., Kraft, R., Sauerbruch, S., Schultz, G. & Harteneck, C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem. 278, 21493–21501 (2003).

    Article  CAS  Google Scholar 

  21. Fonfria, E., et al. Tissue distribution profiles of the human TRPM cation channel family. J. Recept. Signal Transduct. Res. 26, 159–178 (2006).

    Article  CAS  Google Scholar 

  22. Kunert-Keil, C., Bisping, F., Krüger, J. & Brinkmeier, H. Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7, 159 (2006).

    Article  Google Scholar 

  23. Baulieu, E. E. Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23, 963–987 (1998).

    Article  CAS  Google Scholar 

  24. Chen, S.-C. & Wu, F.-S. Mechanism underlying inhibition of the capsaicin receptor-mediated current by pregnenolone sulfate in rat dorsal root ganglion neurons. Brain Res. 1027, 196–200 (2004).

    Article  CAS  Google Scholar 

  25. Asfari, M. et al. Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130, 167–178 (1992).

    Article  CAS  Google Scholar 

  26. MacDonald, P. E. & Rorsman, P. Oscillations, intercellular coupling, and insulin secretion in pancreatic β cells. PLoS Biol. 4, e49 (2006).

    Article  Google Scholar 

  27. Mears, D. Regulation of insulin secretion in islets of Langerhans by Ca2+ channels. J. Membr. Biol. 200, 57–66 (2004).

    Article  CAS  Google Scholar 

  28. Mathur, R. S., Landgrebe, S., Moody, L. O., Powell, S. & Williamson, H. O. Plasma steroid concentrations in maternal and umbilical circulation after spontaneous onset of labor. J. Clin. Endocrinol. Metab. 51, 1235–1238 (1980).

    Article  CAS  Google Scholar 

  29. Hill, M. et al. Neuroactive steroids, their precursors and polar conjugates during parturition and postpartum in maternal and umbilical blood: 3.3β-hydroxy-5-ene steroids. J. Steroid Biochem. Mol. Biol. 82, 241–250 (2002).

    Article  CAS  Google Scholar 

  30. Gillis, K. D. & Misler, S. Single cell assay of exocytosis from pancreatic islet B cells. Pflügers Arch. 420, 121–123 (1992).

    Article  CAS  Google Scholar 

  31. Grimm, C., Kraft, R., Schultz, G. & Harteneck, C. Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine. Mol. Pharmacol. 67, 798–805 (2005).

    Article  CAS  Google Scholar 

  32. Jacobson, D. A. & Philipson, L. H. TRP channels of the pancreatic β cell. Handb. Exp. Pharmacol. 179, 409–424 (2007).

    Article  CAS  Google Scholar 

  33. Henquin, J.-C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–1760 (2000).

    Article  CAS  Google Scholar 

  34. Billiar, R. B., Jassani, M., Saarikoski, S. & Little, B. Pregnenolone and pregnenolone sulfate metabolism in vivo and uterine extraction at midgestation. J. Clin. Endocrinol. Metab. 39, 27–35 (1974).

    Article  CAS  Google Scholar 

  35. Chattoraj, S. C., Pinkus, J. L. & Charles, D. Effect of pregnenolone sulfate administration of the excretion of steroid hormones in pregnant women. Steroids 16, 523–537 (1970).

    Article  CAS  Google Scholar 

  36. Scommegna, A., Burd, L., Goodman, C. & Bieniarz, J. The effect of pregnenolone sulfate on uterine contractility. Am. J. Obstet. Gynecol. 108, 1023–1029 (1970).

    Article  CAS  Google Scholar 

  37. Mennerick, S. et al. Effects on membrane capacitance of steroids with antagonist properties at GABAA receptors. Biophys J. 95, 176–185 (2008).

    Article  CAS  Google Scholar 

  38. de Peretti, E. & Mappus, E. Pattern of plasma pregnenolone sulfate levels in humans from birth to adulthood. J. Clin. Endocrinol. Metab. 57, 550–556 (1983).

    Article  CAS  Google Scholar 

  39. Havlíková, H., Hill, M., Hampl, R. & Starká, L. Sex- and age-related changes in epitestosterone in relation to pregnenolone sulfate and testosterone in normal subjects. J. Clin. Endocrinol. Metab. 87, 2225–2231 (2002).

    Article  Google Scholar 

  40. Scommegna, A. & Bieniarz, J. Measurement of pregnenolone sulfate after solvolysis in human pregnancy plasma. J. Clin. Endocrinol. Metab. 33, 787–792 (1971).

    Article  CAS  Google Scholar 

  41. Bičíková, M. et al. Two neuroactive steroids in midpregnancy as measured in maternal and fetal sera and in amniotic fluid. Steroids 67, 399–402 (2002).

    Article  Google Scholar 

  42. Heit, J. J., Karnik, S. K. & Kim, S. K. Intrinsic regulators of pancreatic β-cell proliferation. Annu. Rev. Cell Dev. Biol. 22, 311–338 (2006).

    Article  CAS  Google Scholar 

  43. de Peretti, E. et al. Usefulness of plasma pregnenolone sulfate in testing pituitary-adrenal function in children. Acta Endocrinol. Suppl. 279, 259–263 (1986).

    Article  CAS  Google Scholar 

  44. Bičíková, M., Tallová, J., Hill, M., Krausová, Z. & Hampl, R. Serum concentrations of some neuroactive steroids in women suffering from mixed anxiety-depressive disorder. Neurochem. Res. 25, 1623–1627 (2000).

    Article  Google Scholar 

  45. Tagawa, N. et al. Serum dehydroepiandrosterone, dehydroepiandrosterone sulfate, and pregnenolone sulfate concentrations in patients with hyperthyroidism and hypothyroidism. Clin. Chem. 46, 523–528 (2000).

    CAS  PubMed  Google Scholar 

  46. Speiser, P. W., Serrat, J., New, M. I. & Gertner, J. M. Insulin insensitivity in adrenal hyperplasia due to nonclassical steroid 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 75, 1421–1424 (1992).

    CAS  PubMed  Google Scholar 

  47. Charmandari, E. et al. Children with classic congenital adrenal hyperplasia have elevated serum leptin concentrations and insulin resistance: potential clinical implications. J. Clin. Endocrinol. Metab. 87, 2114–2120 (2002).

    Article  CAS  Google Scholar 

  48. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  49. Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

Download references

Acknowledgements

We thank S. Plant, M. Portz, H. Löhr, K. Kraushaar, U. Soltek and M. Simon-Thomas for technical support; U. Wissenbach for TRPV6 and TRPM8 expressing cells; V. Chubanov for the TRPM7 expression vector; A. Lückhoff and F.J.P. Kühn for the TRPM2 expression vector; M. Menger and P. Weißgerber for initial help with isolating pancreatic islets. We also thank A. Beck, D. Beech, B. Fakler, M. Flick, M. Freichel, B. Niemeyer and F. Zufall for discussions and for reading an earlier version of the manuscript. Financial support was provided by DFG (Emmy Noether program, J.O., and SFB530, S.E.P. and V.F.) and HOMFOR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Oberwinkler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, T., Loch, S., Lambert, S. et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat Cell Biol 10, 1421–1430 (2008). https://doi.org/10.1038/ncb1801

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1801

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing