Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration

Abstract

p27kip1, a cyclin-dependent kinase (CDK) inhibitor (CKI), generally suppresses CDK activity in proliferating cells. Although another role of p27 in cell migration has been recently suggested in vitro, the physiological importance of p27 in cell migration remains elusive, as p27-deficient mice have not shown any obvious migration-defect-related phenotypes. Here, we show that Cdk5, an unconventional neuronal CDK, phosphorylates and stabilizes p27 as an upstream regulator, maintaining the amount of p27 in post-mitotic neurons. In vivo RNA interference (RNAi) experiments showed that reduced amounts of p27 caused inhibition of cortical neuronal migration and decreased the amount of F-actin in the processes of migrating neurons. The Cdk5–p27 pathway activates an actin-binding protein, cofilin, which is also shown to be involved in cortical neuronal migration in vivo. Our findings shed light on a previously unknown new relationship between CDK and CKI in G0-arrested cells that regulates cytoskeletal reorganization and neuronal migration during corticogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cdk5 phosphorylates and stabilizes p27.
Figure 2: p27 binds to and colocalizes with Cdk5.
Figure 3: Effects of p27 shRNAs.
Figure 4: Effects of p27 shRNAs on cell cycle and differentiation.
Figure 5: Effects of p27 shRNAs on morphology of migrating neurons.
Figure 6: Cdk5 and p27 control cofilin phosphorylation.
Figure 7: CofilinS3A disturbed neuronal migration.
Figure 8: A model for the role of Cdk5 and p27 in cortical neuronal migration.

Similar content being viewed by others

References

  1. Sherr, C. J. & Roberts, J. M. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 18, 2699–2711 (2004).

    Article  CAS  Google Scholar 

  2. Massague, J. G1 cell-cycle control and cancer. Nature 432, 298–306 (2004).

    Article  CAS  Google Scholar 

  3. Bielas, S., Higginbotham, H., Koizumi, H., Tanaka, T. & Gleeson, J. G. Cortical neuronal migration mutants suggest separate but intersecting pathways. Annu. Rev. Cell Dev. Biol. 20, 593–618 (2004).

    Article  CAS  Google Scholar 

  4. Mochida, G. H. & Walsh, C. A. Molecular genetics of human microcephaly. Curr. Opin. Neurol. 14, 151–156 (2001).

    Article  CAS  Google Scholar 

  5. Tsai, L. H., Takahashi, T., Caviness, V. S. Jr & Harlow, E. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119, 1029–1040 (1993).

    CAS  PubMed  Google Scholar 

  6. Gilmore, E. C., Ohshima, T., Goffinet, A. M., Kulkarni, A. B. & Herrup, K. Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci. 18, 6370–6377 (1998).

    Article  CAS  Google Scholar 

  7. Gupta, A., Tsai, L. H. & Wynshaw-Boris, A. Life is a journey: a genetic look at neocortical development. Nature Rev. Genet. 3, 342–355 (2002).

    Article  CAS  Google Scholar 

  8. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  Google Scholar 

  9. Goto, T., Mitsuhashi, T. & Takahashi, T. Altered patterns of neuron production in the p27 knockout mouse. Dev. Neurosci. 26, 208–217 (2004).

    Article  CAS  Google Scholar 

  10. Tarui, T. et al. Overexpression of p27Kip1, probability of cell cycle exit, and laminar destination of neocortical neurons. Cereb. Cortex 15, 1343–1355 (2005).

    Article  CAS  Google Scholar 

  11. Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85, 733–744 (1996).

    Article  CAS  Google Scholar 

  12. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85, 721–732 (1996).

    Article  CAS  Google Scholar 

  13. Nakayama, K. et al. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707–720 (1996).

    Article  CAS  Google Scholar 

  14. Rodier, G. et al. p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J. 20, 6672–6682 (2001).

    Article  CAS  Google Scholar 

  15. Boehm, M. et al. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J. 21, 3390–3401 (2002).

    Article  CAS  Google Scholar 

  16. McAllister, S. S., Becker-Hapak, M., Pintucci, G., Pagano, M. & Dowdy, S. F. Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol. Cell. Biol. 23, 216–228 (2003).

    Article  CAS  Google Scholar 

  17. Ishida, N., Kitagawa, M., Hatakeyama, S. & Nakayama, K. Phosphorylation at serine 10, a major phosphorylation site of p27(Kip1), increases its protein stability. J. Biol. Chem. 275, 25146–25154 (2000).

    Article  CAS  Google Scholar 

  18. Kotake, Y., Nakayama, K., Ishida, N. & Nakayama, K. I. Role of serine 10 phosphorylation in p27 stabilization revealed by analysis of p27 knock-in mice harboring a serine 10 mutation. J. Biol. Chem. 280, 1095–1102 (2005).

    Article  CAS  Google Scholar 

  19. Kawauchi, T., Chihama, K., Nabeshima, Y. & Hoshino, M. The in vivo roles of STEF/Tiam1, Rac1 and JNK in cortical neuronal migration. EMBO J. 22, 4190–4201 (2003).

    Article  CAS  Google Scholar 

  20. Kawauchi, T., Chihama, K., Nishimura, Y. V., Nabeshima, Y. & Hoshino, M. MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK. Biochem. Biophys. Res. Commun. 331, 50–55 (2005).

    Article  CAS  Google Scholar 

  21. Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).

    Article  CAS  Google Scholar 

  22. Ishida, N. et al. Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J. Biol. Chem. 277, 14355–14358 (2002).

    Article  CAS  Google Scholar 

  23. Connor, M. K. et al. CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol. Biol. Cell 14, 201–213 (2003).

    Article  CAS  Google Scholar 

  24. Lee, M. H. et al. The brain-specific activator p35 allows Cdk5 to escape inhibition by p27Kip1 in neurons. Proc. Natl Acad. Sci. USA 93, 3259–3263 (1996).

    Article  CAS  Google Scholar 

  25. Morisaki, H. et al. Cell cycle-dependent phosphorylation of p27 cyclin-dependent kinase (Cdk) inhibitor by cyclin E/Cdk2. Biochem. Biophys. Res. Commun. 240, 386–390 (1997).

    Article  CAS  Google Scholar 

  26. Lacy, E. R. et al. Molecular basis for the specificity of p27 toward cyclin-dependent kinases that regulate cell division. J. Mol. Biol. 349, 764–773 (2005).

    Article  CAS  Google Scholar 

  27. Tabata, H. & Nakajima, K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci. 23, 9996–10001 (2003).

    Article  CAS  Google Scholar 

  28. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci. 7, 136–144 (2004).

    Article  CAS  Google Scholar 

  29. Nikolic, M. The molecular mystery of neuronal migration: FAK and Cdk5. Trends Cell Biol. 14, 1–5 (2004).

    Article  CAS  Google Scholar 

  30. Xie, Z., Sanada, K., Samuels, B. A., Shih, H. & Tsai, L. H. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114, 469–482 (2003).

    Article  CAS  Google Scholar 

  31. Gungabissoon, R. A. & Bamburg, J. R. Regulation of growth cone actin dynamics by ADF/cofilin. J. Histochem. Cytochem. 51, 411–420 (2003).

    Article  CAS  Google Scholar 

  32. Moriyama, K., Iida, K. & Yahara, I. Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1, 73–86 (1996).

    Article  CAS  Google Scholar 

  33. Besson, A., Gurian-West, M., Schmidt, A., Hall, A. & Roberts, J. M. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev. 18, 862–876 (2004).

    Article  CAS  Google Scholar 

  34. Malek, N. P. et al. A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 413, 323–327 (2001).

    Article  CAS  Google Scholar 

  35. Mitsuhashi, T. et al. Overexpression of p27Kip1 lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells. Proc. Natl Acad. Sci. USA 98, 6435–6440 (2001).

    Article  CAS  Google Scholar 

  36. Besson, A., Assoian, R. K. & Roberts, J. M. Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nature Rev. Cancer 4, 948–955 (2004).

    Article  CAS  Google Scholar 

  37. Baldassarre, G. et al. p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7, 51–63 (2005).

    Article  CAS  Google Scholar 

  38. Nagahama, H., Hatakeyama, S., Nakayama, K., Nagata, M. & Tomita, K. Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat. Embryol. 203, 77–87 (2001).

    Article  CAS  Google Scholar 

  39. Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nature Neurosci. 6, 1277–1283. Epub 2003 Nov 16 (2003).

    Article  CAS  Google Scholar 

  40. Gotz, M. Doublecortin finds its place. Nature Neurosci. 6, 1245–1247 (2003).

    Article  Google Scholar 

  41. Corbo, J. C. et al. Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J. Neurosci. 22, 7548–7557 (2002).

    Article  CAS  Google Scholar 

  42. Izawa, I., Amano, M., Chihara, K., Yamamoto, T. & Kaibuchi, K. Possible involvement of the inactivation of the Rho-Rho-kinase pathway in oncogenic Ras-induced transformation. Oncogene 17, 2863–2871 (1998).

    Article  CAS  Google Scholar 

  43. Amano, M. et al. The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J. Biol. Chem. 274, 32418–32424 (1999).

    Article  CAS  Google Scholar 

  44. King, C. C. et al. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J. Biol. Chem. 275, 41201–41209 (2000).

    Article  CAS  Google Scholar 

  45. Yu, J. Y., DeRuiter, S. L. & Turner, D. L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 99, 6047–6052 (2002).

    Article  CAS  Google Scholar 

  46. Matsuo, N., Hoshino, M., Yoshizawa, M. & Nabeshima, Y. Characterization of STEF, a guanine nucleotide exchange factor for Rac1, required for neurite growth. J. Biol. Chem. 277, 2860–2868 (2002).

    Article  CAS  Google Scholar 

  47. Matsuo, N., Terao, M., Nabeshima, Y. & Hoshino, M. Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology. Mol. Cell. Neurosci. 24, 69–81 (2003).

    Article  CAS  Google Scholar 

  48. Yoshizawa, M. et al. Involvement of a Rac activator,P-Rex1, in neurotrophin-derived signaling and neuronal migration. J. Neurosci. 25, 4406–4419 (2005).

    Article  CAS  Google Scholar 

  49. Kioka, N. et al. Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization. J. Cell Biol. 144, 59–69 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Bokoch, K. Kaibuchi, S. Meloche, K. Moriyama, M. Nakanishi, A. Takashima, L.H. Tsai and D.L. Turner for providing plasmids. We also thank K-i. Nakayama, K. Nakayama, R. Yu and M. Sone for helpful comments. This work was supported by the Center of Excellence (COE) grant and Grant-in-Aid for Scientific Research on Priority Areas, “Elucidation of glia-neuron network mediated information processing systems (#16047220)”, “Molecular Brain Science 16067101 (#17024030)” and “Membrane Traffic” from the Ministry of Education, Culture, Sports, and Science and Technology, Japan, and by grants from Japan Brain Foundation and Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Hoshino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4 and S5 (PDF 886 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawauchi, T., Chihama, K., Nabeshima, Yi. et al. Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nat Cell Biol 8, 17–26 (2006). https://doi.org/10.1038/ncb1338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing