Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macrophage biology in development, homeostasis and disease

Abstract

Macrophages, the most plastic cells of the haematopoietic system, are found in all tissues and show great functional diversity. They have roles in development, homeostasis, tissue repair and immunity. Although tissue macrophages are anatomically distinct from one another, and have different transcriptional profiles and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this Review, we discuss how macrophages regulate normal physiology and development, and provide several examples of their pathophysiological roles in disease. We define the ‘hallmarks’ of macrophages according to the states that they adopt during the performance of their various roles, taking into account new insights into the diversity of their lineages, identities and regulation. It is essential to understand this diversity because macrophages have emerged as important therapeutic targets in many human diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrophages in development, homeostasis and disease.
Figure 2: A redefined model of macrophage lineages in mice.
Figure 3: Activated and alternatively activated macrophages differentially regulate insulin sensitivity in obesity.
Figure 4: Macrophages that exhibit unique activation profiles regulate disease progression and resolution.

Similar content being viewed by others

References

  1. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nature Immunol. 13, 1118–1128 (2012)This paper provides a detailed analysis of the macrophage transcriptome. Several novel genes are identified that are distinctly and universally associated with mature tissue-resident macrophages, but the results also illustrate the extreme diversity of these cell types.

    Article  CAS  Google Scholar 

  2. Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003)

    Article  CAS  Google Scholar 

  3. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011)This paper shows that tissue macrophages can proliferate in response to IL-4, suggesting that monocyte recruitment and definitive haematopoiesis may not be required for macrophage expansion in type 2 immunity.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012)Together with refs 10 and 11 , this paper indicates that the mononuclear phagocytic lineage needs to be reassessed and that most resident adult macrophage populations derive from the yolk sac.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nature Rev. Immunol. 11, 723–737 (2011)

    Article  CAS  Google Scholar 

  8. Wynn, T. A. & Barron, L. Macrophages: master regulators of inflammation and fibrosis. Semin. Liver Dis. 30, 245–257 (2010)A comprehensive review examining the regulatory role of macrophages in chronic inflammatory disease and fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nature Rev. Immunol. 5, 953–964 (2005)The definitive review of activated and alternatively activated macrophages, with detailed explanations of the definitions and restrictions of these terms.

    Article  CAS  Google Scholar 

  10. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frankenberger, M. et al. A defect of CD16-positive monocytes can occur without disease. Immunobiology 218, 169–174 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. Hume, D. A. Macrophages as APC and the dendritic cell myth. J. Immunol. 181, 5829–5835 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. Satpathy, A. T., Wu, X., Albring, J. C. & Murphy, K. M. Re(de)fining the dendritic cell lineage. Nature Immunol. 13, 1145–1154 (2012)

    Article  CAS  Google Scholar 

  15. Chitu, V. & Stanley, E. R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 18, 39–48 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6, e26317 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei, S. et al. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J. Leukoc. Biol. 8, 495–505 (2010)

    Article  CAS  Google Scholar 

  18. Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nature Immunol. 13, 753–760 (2012)

    Article  CAS  Google Scholar 

  19. Pollard, J. W. Trophic macrophages in development and disease. Nature Rev. Immunol. 9, 259–270 (2009)

    Article  CAS  Google Scholar 

  20. Niida, S. et al. Vascular endothelial growth factor can substitute for macrophage colony-stimulating dactor in the support of osteoclastic bone resorption. J. Exp. Med. 190, 293–298 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamilton, J. A. & Achuthan, A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol. 34, 81–89 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. Miller, J. C. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nature Immunol. 13, 888–899 (2012)

    Article  CAS  Google Scholar 

  23. Hume, D. A. The complexity of constitutive and inducible gene expression in mononuclear phagocytes. J. Leukoc. Biol. (2012)

  24. Edwards, J. R. & Mundy, G. R. Advances in osteoclast biology: old findings and new insights from mouse models. Nature Rev. Rheumatol. 7, 235–243 (2011)

    Article  CAS  Google Scholar 

  25. Bigley, V. et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J. Exp. Med. 208, 227–234 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stefater, J. A., III, Ren, S., Lang, R. A. & Duffield, J. S. Metchnikoff's policemen: macrophages in development, homeostasis and regeneration. Trends Mol. Med. (2011)

  27. Gyorki, D. E., Asselin-Labat, M. L., van Rooijen, N., Lindeman, G. J. & Visvader, J. E. Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res. 11, R62 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA 102, 99–104 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2011)This paper, together with refs 27, 28 and 30 , shows that macrophages regulate various stem cell niches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boulter, L. et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nature Med. 18, 572–579 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292, 1546–1549 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gordy, C., Pua, H., Sempowski, G. D. & He, Y. W. Regulation of steady-state neutrophil homeostasis by macrophages. Blood 117, 618–629 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dai, X. M. et al. Targeted disruption of the mouse CSF-1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primititive progenitor cell frequencies and reproductive defects. Blood 99, 111–120 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol. 2, 965–975 (2002)

    Article  CAS  Google Scholar 

  36. Rao, S. et al. Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development 134, 4449–4458 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. Stefater, J. A., III et al. Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 474, 511–515 (2011)An important paper showing the molecular basis of the macrophage regulation of angiogenesis through the WNT pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tammela, T. et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nature Cell Biol. 13, 1202–1213 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gordon, E. J. et al. Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development 137, 3899–3910 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nature Med. 15, 545–552 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. Nandi, S. et al. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev. Biol. 367, 100–113 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, Y., Du, X. F., Liu, C. S., Wen, Z. L. & Du, J. L. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell 23, 1189–1202 (2012)A paper that demonstrates that microglia regulate neuronal activity in zebrafish using intravital imaging.

    Article  CAS  PubMed  Google Scholar 

  44. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nature Genet. 44, 200–205 (2011)

    Article  PubMed  CAS  Google Scholar 

  46. London, A. et al. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J. Exp Med. 208, 23–39 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kigerl, K. A. et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29, 13435–13444 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Salegio, E. A., Pollard, A. N., Smith, M. & Zhou, X. F. Macrophage presence is essential for the regeneration of ascending afferent fibres following a conditioning sciatic nerve lesion in adult rats. BMC Neurosci. 12, 11 (2011)

    Article  PubMed  Google Scholar 

  49. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Chawla, A., Nguyen, K. D. & Goh, Y. P. Macrophage-mediated inflammation in metabolic disease. Nature Rev. Immunol. 11, 738–749 (2011)

    Article  CAS  Google Scholar 

  51. Odegaard, J. I. & Chawla, A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339, 172–177 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Olefsky, J. & Glass, C. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010)

    Article  CAS  PubMed  Google Scholar 

  53. Rosen, E. D. & Spiegelman, B. M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847–853 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003)This paper, together with ref. 55 , was the first to demonstrate that obesity results in infiltration of WAT by macrophages, which contributes to its inflamed nature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094–2101 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kang, K. et al. Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liao, X. et al. 7, 485–495 Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121, 2736–2749 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007)This paper showed that residence of AAMs in WAT is necessary for the maintenance of insulin sensitivity in obese animals.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 332, 243–247 (2011)

  63. Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006)

    Article  CAS  PubMed  Google Scholar 

  64. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005)

    Article  CAS  PubMed  Google Scholar 

  65. Lowell, B. B. & Spiegelman, B. M. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660 (2000)

    Article  CAS  PubMed  Google Scholar 

  66. Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011)This paper demonstrated a physiological function for AAMs in sustaining adaptive thermogenesis, which allows mammals to adapt to cold environments.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang, W. et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes 59, 347–357 (2010)

    Article  CAS  PubMed  Google Scholar 

  69. Eguchi, K. et al. Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell Metab. 15, 518–533 (2012)

    Article  CAS  PubMed  Google Scholar 

  70. Ehses, J. A. et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370 (2007)

    Article  CAS  PubMed  Google Scholar 

  71. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010)

    Article  CAS  PubMed  Google Scholar 

  72. Sindrilaru, A. et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest. 121, 985–997 (2011)

    Article  CAS  Google Scholar 

  73. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nature Immunol. 12, 231–238 (2011)This paper showed that IRF5 expression is induced in macrophages in response to inflammatory stimuli and that this contributes to the polarization of macrophages with an inflammatory phenotype, which causes T H 1 and T H 17 cells to respond.

    Article  CAS  Google Scholar 

  74. Ahn, G. O. et al. Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc. Natl Acad. Sci. USA 107, 8363–8368 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Balkwill, F. R. & Mantovani, A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin. Cancer Biol. 22, 33–40 (2012)

    Article  CAS  PubMed  Google Scholar 

  77. Zaidi, M. R. et al. Interferon-gamma links ultraviolet radiation to melanomagenesis in mice. Nature 469, 548–553 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Deng, L. et al. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am. J. Pathol. 176, 952–967 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. DeNardo, D. G., Andreu, P. & Coussens, L. M. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev. 29, 309–316 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012)

    Article  CAS  PubMed  Google Scholar 

  82. Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006)

    Article  CAS  PubMed  Google Scholar 

  83. Chen, J. et al. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19, 541–555 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mason, S. D. & Joyce, J. A. Proteolytic networks in cancer. Trends Cell Biol. 21, 228–237 (2011)

    Article  CAS  PubMed  Google Scholar 

  85. Kessenbrock, K., Plaks, V. & Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66, 11238–11246 (2006)

    Article  CAS  PubMed  Google Scholar 

  87. Mazzieri, R. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19, 512–526 (2011)

    Article  CAS  PubMed  Google Scholar 

  88. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nature Rev. Cancer 8, 618–631 (2008)

    Article  CAS  Google Scholar 

  89. Stockmann, C. et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456, 814–818 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnol. 25, 911–920 (2007)

    Article  CAS  Google Scholar 

  91. Du, R. et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, E. Y. et al. Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol. Oncol. 1, 288–302 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  93. Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nature Rev. Cancer 9, 285–293 (2009)

    Article  CAS  Google Scholar 

  94. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Med. 18, 883–891 (2012)

    Article  CAS  PubMed  Google Scholar 

  95. Gil-Bernabé, A. M. et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119, 3164–3175 (2012)

    Article  PubMed  CAS  Google Scholar 

  96. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011)This paper suggests that macrophages may represent a therapeutic target to prevent tumour cell metastatic seeding and growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Coussens, L. M. & Pollard, J. W. Leukocytes in mammary development and cancer. Cold Spring Harb. Perspect. Biol. 3, a003285 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Wu, Y. & Zheng, L. Dynamic education of macrophages in different areas of human tumors. Cancer Microenvironment 5, 195–201 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hagemann, T. et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J. Exp. Med. 205, 1261–1268 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pello, O. M. et al. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119, 411–421 (2012)

    Article  PubMed  CAS  Google Scholar 

  101. Zabuawala, T. et al. An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res. 70, 1323–1333 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hansson, G. K. & Hermansson, A. The immune system in atherosclerosis. Nature Immunol. 12, 204–212 (2011)

    Article  CAS  Google Scholar 

  103. Kamada, N. et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis. J. Clin. Invest. 118, 2269–2280 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature 473, 317–325 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Julia, V. et al. A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cells long after antigen exposure. Immunity 16, 271–283 (2002)

    Article  CAS  PubMed  Google Scholar 

  106. Ford, A. Q. et al. Adoptive transfer of IL-4Rα+ macrophages is sufficient to enhance eosinophilic inflammation in a mouse model of allergic lung inflammation. BMC Immunol. 13, 6 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Moreira, A. P. et al. Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease. J. Allergy Clin. Immunol. 126, 712–721 (2010)

    Article  CAS  PubMed  Google Scholar 

  108. Melgert, B. N. et al. More alternative activation of macrophages in lungs of asthmatic patients. J. Allergy Clin. Immunol. 127, 831–833 (2011)

    Article  PubMed  Google Scholar 

  109. Nieuwenhuizen, N. E. et al. Allergic airway disease is unaffected by the absence of IL-4Rα-dependent alternatively activated macrophages. J. Allergy Clin. Immunol. 130, 743–750 (2012)

    Article  CAS  PubMed  Google Scholar 

  110. Murray, P. J. & Wynn, T. A. Obstacles and opportunities for understanding macrophage polarization. J. Leukoc. Biol. 89, 557–563 (2011)

    Article  CAS  Google Scholar 

  111. Ponomarev, E. D., Veremeyko, T., Barteneva, N., Krichevsky, A. M. & Weiner, H. L. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nature Med. 17, 64–70 (2011)

    Article  CAS  PubMed  Google Scholar 

  112. Platt, A. M., Bain, C. C., Bordon, Y., Sester, D. P. & Mowat, A. M. An independent subset of TLR expressing CCR2-dependent macrophages promotes colonic inflammation. J. Immunol. 184, 6843–6854 (2010)

    Article  CAS  PubMed  Google Scholar 

  113. Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B. L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139–155 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gelderman, K. A. et al. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. J. Clin. Invest. 117, 3020–3028 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Smith, A. M. et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn's disease. J. Exp. Med. 206, 1883–1897 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nature Immunol. 10, 1178–1184 (2009)

    Article  CAS  Google Scholar 

  117. Hoek, R. M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Shechter, R. et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 6, e1000113 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nature Med. 18, 1028–1040 (2012)

    Article  CAS  PubMed  Google Scholar 

  121. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nature Rev. Immunol. 8, 958–969 (2008)

  122. Thomas, J. A. et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 53, 2003–2015 (2011)

    Article  CAS  PubMed  Google Scholar 

  123. Ravasi, T. et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell. 140, 744–752 (2010)

  124. Frankenberger, M. et al. Transcript profiling of CD16-positive monocytes reveals a unique molecular fingerprint. Eur. J. Immunol. 42, 957–974 (2012)

    Article  CAS  PubMed  Google Scholar 

  125. Entenberg, D. et al. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nature Protocols 6, 1500–1520 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors apologize to colleagues whose papers they were unable to cite on this occasion. T.A.W. is supported by the intramural research program of the National Institutes of Allergy and Infectious Diseases (National Institutes of Health (NIH)). This work was supported by the National Cancer Institute of the NIH (award numbers R01CA131270S, U54HD058155 and PO1CA100324 (to J.W.P.), and HL076746, DK094641 and DK094641 (to A.C.)); the Diabetes Family Fund (to the University of California, San Francisco), an American Heart Association (AHA) Innovative Award (12PILT11840038) and a NIH Director’s Pioneer Award (DP1AR064158 to A.C.).

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions T.A.W., A.C. and J.W.P. contributed to the writing and editing of all aspects of this Review.

Corresponding authors

Correspondence to Thomas A. Wynn, Ajay Chawla or Jeffrey W. Pollard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wynn, T., Chawla, A. & Pollard, J. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013). https://doi.org/10.1038/nature12034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12034

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing