Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Activity-dependent neuronal signalling and autism spectrum disorder

Abstract

Neuronal activity induces the post-translational modification of synaptic molecules, promotes localized protein synthesis within dendrites and activates gene transcription, thereby regulating synaptic function and allowing neuronal circuits to respond dynamically to experience. Evidence indicates that many of the genes that are mutated in autism spectrum disorder are crucial components of the activity-dependent signalling networks that regulate synapse development and plasticity. Dysregulation of activity-dependent signalling pathways in neurons may, therefore, have a key role in the aetiology of autism spectrum disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of synaptic development and function by neuronal activity.
Figure 2: Neuronal activity regulates mRNA translation and synaptic plasticity.
Figure 3: Activity-dependent gene expression and ASD.
Figure 4: BDNF regulates mRNA translation.

References

  1. Baird, G. et al. Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet 368, 210–215 (2006).

    Article  PubMed  Google Scholar 

  2. Zoghbi, H. Y. & Bear, M. F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, a009886 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Flavell, S. W. & Greenberg, M. E. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 31, 563–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abrahams, B. S. & Geschwind, D. H. Advances in autism genetics: on the threshold of a new neurobiology. Nature Rev. Genet. 9, 341–355 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. State, M. W. & Levitt, P. The conundrums of understanding genetic risks for autism spectrum disorders. Nature Neurosci. 14, 1499–1506 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Malhotra, D. & Sebat, J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148, 1223–1241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. O'Roak, B. J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genet. 43, 585–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Kong, A. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471–475 (2012). References 7–10 demonstrate the ability of new sequencing technologies to significantly advance our understanding of the genetic basis of ASD.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Greer, P. L. & Greenberg, M. E. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59, 846–860 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Kelleher, R. J. III & Bear, M. F. The autistic neuron: troubled translation? Cell 135, 401–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Wiesel, T. N. Postnatal development of the visual cortex and the influence of environment. Nature 299, 583–591 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Cohen, S. & Greenberg, M. E. Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu. Rev. Cell Dev. Biol. 24, 183–209 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Missler, M., Sudhof, T. C. & Biederer, T. Synaptic cell adhesion. Cold Spring Harb. Perspect. Biol. 4, a005694 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Naisbitt, S. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23, 569–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Sala, C. et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Sheng, M. & Kim, E. The postsynaptic organization of synapses. Cold Spring Harb. Perspect. Biol. 3, a005678 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Luscher, C. & Malenka, R. C. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 4, a005710 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hardingham, G. E., Arnold, F. J. & Bading, H. A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nature Neurosci. 4, 565–566 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Bhakar, A. L., Dolen, G. & Bear, M. F. The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci. 35, 417–443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bading, H., Ginty, D. D. & Greenberg, M. E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181–186 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Dolmetsch, R. E., Pajvani, U., Fife, K., Spotts, J. M. & Greenberg, M. E. Signaling to the nucleus by an L-type calcium channel–calmodulin complex through the MAP kinase pathway. Science 294, 333–339 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Flavell, S. W. et al. Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311, 1008–1012 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Greenberg, M. E., Ziff, E. B. & Greene, L. A. Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234, 80–83 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Lin, Y. et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature 455, 1198–1204 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flavell, S. W. et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 60, 1022–1038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hong, E. J., McCord, A. E. & Greenberg, M. E. A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. Neuron 60, 610–624 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Splawski, I. et al. CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morrow, E. M. et al. Identifying autism loci and genes by tracing recent shared ancestry. Science 321, 218–223 (2008). This paper provides evidence for the hypothesis that genetic mutations associated with ASD may disrupt activity-dependent gene expression programs.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chahrour, M. H. et al. Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet. 8, e1002635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, T. K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sudhof, T. C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455, 903–911 (2008).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tabuchi, K. et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71–76 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Etherton, M. R., Tabuchi, K., Sharma, M., Ko, J. & Sudhof, T. C. An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus. EMBO J. 30, 2908–2919 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Etherton, M. R., Blaiss, C. A., Powell, C. M. & Sudhof, T. C. Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc. Natl Acad. Sci. USA 106, 17998–18003 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chubykin, A. A. et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54, 919–931 (2007). This study reports the crucial role for neuroligins in activity-dependent synapse maturation and how this pathway is dysregulated by ASD-associated mutations in neuroligin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, J. et al. Neuroligin-1 is required for normal expression of LTP and associative fear memory in the amygdala of adult animals. Proc. Natl Acad. Sci. USA 105, 9087–9092 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi, Y. B. et al. Neurexin-neuroligin transsynaptic interaction mediates learning-related synaptic remodeling and long-term facilitation in Aplysia. Neuron 70, 468–481 (2011). Using the Aplysia model, this study demonstrates that the neurexin–neuroligin interaction regulates activity-dependent synaptic development and plasticity, a process that is dysregulated by an ASD-associated mutation in neuroligin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thyagarajan, A. & Ting, A. Y. Imaging activity-dependent regulation of neurexin-neuroligin interactions using trans-synaptic enzymatic biotinylation. Cell 143, 456–469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iijima, T. et al. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 147, 1601–1614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sato, D. et al. SHANK1 deletions in males with autism spectrum disorder. Am. J. Hum. Genet. 90, 879–887 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peca, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmeisser, M. J. et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486, 256–260 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Won, H. et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261–265 (2012). References 47–49 demonstrate the role of Shanks in regulating excitatory neurotransmission.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Ehlers, M. D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neurosci. 6, 231–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Bingol, B. & Sheng, M. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69, 22–32 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Hung, A. Y., Sung, C. C., Brito, I. L. & Sheng, M. Degradation of postsynaptic scaffold GKAP and regulation of dendritic spine morphology by the TRIM3 ubiquitin ligase in rat hippocampal neurons. PLoS ONE 5, e9842 (2010).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lee, S. H. et al. Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319, 1253–1256 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Zalfa, F. et al. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112, 317–327 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Huber, K. M., Gallagher, S. M., Warren, S. T. & Bear, M. F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl Acad. Sci. USA 99, 7746–7750 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Osterweil, E. K., Krueger, D. D., Reinhold, K. & Bear, M. F. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J. Neurosci. 30, 15616–15627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dolen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Park, S. et al. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59, 70–83 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Waung, M. W., Pfeiffer, B. E., Nosyreva, E. D., Ronesi, J. A. & Huber, K. M. Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 59, 84–97 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Niere, F., Wilkerson, J. R. & Huber, K. M. Evidence for a fragile X mental retardation protein-mediated translational switch in metabotropic glutamate receptor-triggered Arc translation and long-term depression. J. Neurosci. 32, 5924–5936 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hou, L. et al. Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51, 441–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Harlow, E. G. et al. Critical period plasticity is disrupted in the barrel cortex of Fmr1 knockout mice. Neuron 65, 385–398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pfeiffer, B. E. et al. Fragile X mental retardation protein is required for synapse elimination by the activity-dependent transcription factor MEF2. Neuron 66, 191–197 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barbosa, A. C. et al. MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc. Natl Acad. Sci. USA 105, 9391–9396 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pulipparacharuvil, S. et al. Cocaine regulates MEF2 to control synaptic and behavioral plasticity. Neuron 59, 621–633 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Han, J. M. & Sahin, M. TSC1/TSC2 signaling in the CNS. FEBS Lett. 585, 973–980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Ehninger, D. et al. Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nature Med. 14, 843–848 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Zhou, J. & Parada, L. F. PTEN signaling in autism spectrum disorders. Curr. Opin. Neurobiol. 22, 873–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Auerbach, B. D., Osterweil, E. K. & Bear, M. F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63–68 (2011). This paper shows that loss of function of either TSC1–TSC2 or FMRP disrupts activity-regulated mRNA translation and synaptic plasticity in opposite directions.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bateup, H. S., Takasaki, K. T., Saulnier, J. L., Denefrio, C. L. & Sabatini, B. L. Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function. J. Neurosci. 31, 8862–8869 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ceman, S. et al. Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum. Mol. Genet. 12, 3295–3305 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Narayanan, U. et al. FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. J. Neurosci. 27, 14349–14357 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Muddashetty, R. S. et al. Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol. Cell 42, 673–688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhat, S. et al. CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog. Neurobiol. 99, 1–14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barrett, C. F. & Tsien, R. W. The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels. Proc. Natl Acad. Sci. USA 105, 2157–2162 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pasca, S. P. et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Med. 17, 1657–1662 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Skene, P. J. et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol. Cell 37, 457–468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cohen, S. et al. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron 72, 72–85 (2011). This paper demonstrates the importance of activity-dependent regulation of MECP2 in the control of synapse development and behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, W. G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Zhou, Z. et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52, 255–269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Deng, J. V. et al. MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nature Neurosci. 13, 1128–1136 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Li, H., Zhong, X., Chau, K. F., Williams, E. C. & Chang, Q. Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nature Neurosci. 14, 1001–1008 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Noutel, J., Hong, Y. K., Leu, B., Kang, E. & Chen, C. Experience-dependent retinogeniculate synapse remodeling is abnormal in MeCP2-deficient mice. Neuron 70, 35–42 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dani, V. S. et al. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc. Natl Acad. Sci. USA 102, 12560–12565 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chao, H. T., Zoghbi, H. Y. & Rosenmund, C. MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron 56, 58–65 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moretti, P. et al. Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J. Neurosci. 26, 319–327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Greer, P. L. et al. The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating Arc. Cell 140, 704–716 (2010). This study provides insight into the molecular mechanisms underlying Angelman syndrome and the role of neuronal activity in regulating UBE3A and its targets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiang, Y. H. et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Yashiro, K. et al. Ube3a is required for experience-dependent maturation of the neocortex. Nature Neurosci. 12, 777–783 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Wallace, M. L., Burette, A. C., Weinberg, R. J. & Philpot, B. D. Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects. Neuron 74, 793–800 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kelleher, R. J. III et al. High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism. PLoS ONE 7, e35003 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kelleher, R. J. III, Govindarajan, A., Jung, H. Y., Kang, H. & Tonegawa, S. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116, 467–479 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Guy, J., Gan, J., Selfridge, J., Cobb, S. & Bird, A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 315, 1143–1147 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Giacometti, E., Luikenhuis, S., Beard, C. & Jaenisch, R. Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc. Natl Acad. Sci. USA 104, 1931–1936 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Woerden, G. M. et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nature Neurosci. 10, 280–282 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.E.G. is supported by NIH grant RO1NS048276 and the Rett Syndrome Research Trust. D.H.E. is supported by NIH grant K08MH90306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Greenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, D., Greenberg, M. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493, 327–337 (2013). https://doi.org/10.1038/nature11860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11860

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing