Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans

Abstract

Transmembrane channel-like (TMC) genes encode a broadly conserved family of multipass integral membrane proteins in animals1,2. Human TMC1 and TMC2 genes are linked to human deafness and required for hair-cell mechanotransduction; however, the molecular functions of these and other TMC proteins have not been determined3,4,5,6. Here we show that the Caenorhabditis elegans tmc-1 gene encodes a sodium sensor that functions specifically in salt taste chemosensation. tmc-1 is expressed in the ASH polymodal avoidance neurons, where it is required for salt-evoked neuronal activity and behavioural avoidance of high concentrations of NaCl. However, tmc-1 has no effect on responses to other stimuli sensed by the ASH neurons including high osmolarity and chemical repellents, indicating a specific role in salt sensation. When expressed in mammalian cell culture, C. elegans TMC-1 generates a predominantly cationic conductance activated by high extracellular sodium but not by other cations or uncharged small molecules. Thus, TMC-1 is both necessary for salt sensation in vivo and sufficient to generate a sodium-sensitive channel in vitro, identifying it as a probable ionotropic sensory receptor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of TMC-1 in chemosensory neurons.
Figure 2: tmc-1 is specifically required for high salt avoidance behaviour.
Figure 3: tmc-1 is specifically required for ASH chemosensory neuron responses to high salt concentration.
Figure 4: Sodium-sensitive cation currents in TMC-1-expressing cells.

Similar content being viewed by others

References

  1. Kurima, K., Yang, Y., Sorber, K. & Griffith, A. J. Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis. Genomics 82, 300–308 (2003)

    Article  CAS  Google Scholar 

  2. Keresztes, G., Mutai, H. & Heller, S. TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins. BMC Genomics 4, 24 (2003)

    Article  Google Scholar 

  3. Kurima, K. et al. Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nature Genet. 30, 277–284 (2002)

    Article  Google Scholar 

  4. Vreugde, S. et al. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nature Genet. 30, 257–258 (2002)

    Article  Google Scholar 

  5. Marcotti, W., Erven, A., Johnson, S. L., Steel, K. P. & Kros, C. J. Tmc1 is necessary for normal functional maturation and survival of inner and outer hair cells in the mouse cochlea. J. Physiol. (Lond.) 574, 677–698 (2006)

    Article  CAS  Google Scholar 

  6. Kawashima, Y. et al. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J. Clin. Invest. 121, 4796–4809 (2011)

    Article  CAS  Google Scholar 

  7. Smith, C. J. et al. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans . Dev. Biol. 345, 18–33 (2010)

    Article  CAS  Google Scholar 

  8. Hilliard, M. A., Bargmann, C. I. & Bazzicalupo, P. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr. Biol. 12, 730–734 (2002)

    Article  CAS  Google Scholar 

  9. Kaplan, J. M. & Horvitz, H. R. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 90, 2227–2231 (1993)

    Article  ADS  CAS  Google Scholar 

  10. Bargmann, C. I., Thomas, J. H. & Horvitz, H. R. Chemosensory cell function in the behavior and development of Caenorhabditis elegans . Cold Spring Harb. Symp. Quant. Biol. 55, 529–538 (1990)

    Article  CAS  Google Scholar 

  11. Sambongi, Y. et al. Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans . Neuroreport 10, 753–757 (1999)

    Article  CAS  Google Scholar 

  12. Hilliard, M. A., Bergamasco, C., Arbucci, S., Plasterk, R. H. & Bazzicalupo, P. Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans . EMBO J. 23, 1101–1111 (2004)

    Article  CAS  Google Scholar 

  13. Hukema, R. K., Rademakers, S., Dekkers, M. P., Burghoorn, J. & Jansen, G. Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans . EMBO J. 25, 312–322 (2006)

    Article  CAS  Google Scholar 

  14. Hilliard, M. A. et al. In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J. 24, 63–72 (2005)

    Article  CAS  Google Scholar 

  15. Suzuki, H. et al. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature 454, 114–117 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Wakabayashi, T. et al. In vivo calcium imaging of OFF-responding ASK chemosensory neurons in C. elegans . Biochim. Biophys. Acta 1790, 765–769 (2009)

    Article  CAS  Google Scholar 

  17. Jang, H. et al. Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans . Neuron 75, 585–592 (2012)

    Article  CAS  Google Scholar 

  18. Grimm, C., Kraft, R., Sauerbruch, S., Schultz, G. & Harteneck, C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem. 278, 21493–21501 (2003)

    Article  CAS  Google Scholar 

  19. Coburn, C. M. & Bargmann, C. I. A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans . Neuron 17, 695–706 (1996)

    Article  CAS  Google Scholar 

  20. Komatsu, H., Mori, I., Rhee, J. S., Akaike, N. & Ohshima, Y. Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans . Neuron 17, 707–718 (1996)

    Article  CAS  Google Scholar 

  21. Colbert, H. A., Smith, T. L. & Bargmann, C. I. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in C. elegans . J. Neurosci. 17, 8259–8269 (1997)

    Article  CAS  Google Scholar 

  22. Geffeney, S. L. et al. DEG/ENaC but not TRP channels are the major mechanoelectrical transduction channels in a C. elegans nociceptor. Neuron 71, 845–857 (2011)

    Article  CAS  Google Scholar 

  23. Liu, L. et al. Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron 39, 133–146 (2003)

    Article  CAS  Google Scholar 

  24. Chandrashekar, J. et al. The cells and peripheral representation of sodium taste in mice. Nature 464, 297–301 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Lyall, V. et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol. (Lond.) 558, 147–159 (2004)

    Article  CAS  Google Scholar 

  26. Ohta, T., Imagawa, T. & Ito, S. Novel gating and sensitizing mechanism of capsaicin receptor (TRPV1): tonic inhibitory regulation of extracellular sodium through the external protonation sites on TRPV1. J. Biol. Chem. 283, 9377–9387 (2008)

    Article  CAS  Google Scholar 

  27. Chraïbi, A. & Horisberger, J. D. Na self inhibition of human epithelial Na channel: temperature dependence and effect of extracellular proteases. J. Gen. Physiol. 120, 133–145 (2002)

    Article  Google Scholar 

  28. Zhou, Y. & MacKinnon, R. Ion binding affinity in the cavity of the KcsA potassium channel. Biochemistry 43, 4978–4982 (2004)

    Article  CAS  Google Scholar 

  29. Pocock, R. & Hobert, O. Hypoxia activates a latent circuit for processing gustatory information in C. elegans . Nature Neurosci. 13, 610–614 (2010)

    Article  CAS  Google Scholar 

  30. Ezcurra, M., Tanizawa, Y., Swoboda, P. & Schafer, W. R. Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO J. 30, 1110–1122 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Caenorhabditis Genetics Center and M. de Bono for strains, and A. Patapoutian, J. R. Holt, J. Hao, B. Zhao, D. Miller and R. Branicky for suggestions and comments on the manuscript. This research was supported by the Medical Research Council (W.R.S.) and grants to S.W.H. from the National Research Foundation of Korea (2012000540) and Korea Health technology R&D Project of Ministry of Health & Welfare (A111373).

Author information

Authors and Affiliations

Authors

Contributions

M.C. and S.B. carried out the experiments and analysed the data. All the authors planned experiments and interpreted results. S.W.H. and W.R.S. supervised the research. W.R.S. wrote the paper with contributions from M.C. and S.W.H.

Corresponding authors

Correspondence to Sun Wook Hwang or William R. Schafer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary References and Supplementary Figures 1-12. (PDF 7950 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatzigeorgiou, M., Bang, S., Hwang, S. et al. tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494, 95–99 (2013). https://doi.org/10.1038/nature11845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11845

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing