Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A subset of dopamine neurons signals reward for odour memory in Drosophila

Abstract

Animals approach stimuli that predict a pleasant outcome1. After the paired presentation of an odour and a reward, Drosophila melanogaster can develop a conditioned approach towards that odour2,3. Despite recent advances in understanding the neural circuits for associative memory and appetitive motivation4, the cellular mechanisms for reward processing in the fly brain are unknown. Here we show that a group of dopamine neurons in the protocerebral anterior medial (PAM) cluster signals sugar reward by transient activation and inactivation of target neurons in intact behaving flies. These dopamine neurons are selectively required for the reinforcing property of, but not a reflexive response to, the sugar stimulus. In vivo calcium imaging revealed that these neurons are activated by sugar ingestion and the activation is increased on starvation. The output sites of the PAM neurons are mainly localized to the medial lobes of the mushroom bodies (MBs), where appetitive olfactory associative memory is formed5,6. We therefore propose that the PAM cluster neurons endow a positive predictive value to the odour in the MBs. Dopamine in insects is known to mediate aversive reinforcement signals5,7,8,9,10,11. Our results highlight the cellular specificity underlying the various roles of dopamine and the importance of spatially segregated local circuits within the MBs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermo-activation with DDC-GAL4 induces appetitive memory.
Figure 2: The PAM cluster neurons signal reward for olfactory memory.
Figure 3: The PAM neurons convey the reward signal to the MB.
Figure 4: The PAM neurons integrate reward and relevant signals.

Similar content being viewed by others

References

  1. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115 (2006)

    Article  Google Scholar 

  2. Tempel, B. L., Bonini, N., Dawson, D. R. & Quinn, W. G. Reward learning in normal and mutant Drosophila. Proc. Natl Acad. Sci. USA 80, 1482–1486 (1983)

    Article  ADS  CAS  Google Scholar 

  3. Kaun, K. R., Azanchi, R., Maung, Z., Hirsh, J. & Heberlein, U. A Drosophila model for alcohol reward. Nature Neurosci. 14, 612–619 (2011)

    Article  CAS  Google Scholar 

  4. Waddell, S. Dopamine reveals neural circuit mechanisms of fly memory. Trends Neurosci. 33, 457–464 (2010)

    Article  CAS  Google Scholar 

  5. Schwaerzel, M. et al. Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci. 23, 10495–10502 (2003)

    Article  CAS  Google Scholar 

  6. Trannoy, S., Redt-Clouet, C., Dura, J. M. & Preat, T. Parallel processing of appetitive short- and long-term memories in Drosophila. Curr. Biol. 21, 1647–1653 (2011)

    Article  CAS  Google Scholar 

  7. Riemensperger, T., Völler, T., Stock, P., Buchner, E. & Fiala, A. Punishment prediction by dopaminergic neurons in Drosophila. Curr. Biol. 15, 1953–1960 (2005)

    Article  CAS  Google Scholar 

  8. Claridge-Chang, A. et al. Writing memories with light-addressable reinforcement circuitry. Cell 139, 405–415 (2009)

    Article  CAS  Google Scholar 

  9. Mao, Z. & Davis, R. L. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front. Neural Circuits 3, 5 (2009)

    Article  Google Scholar 

  10. Aso, Y. et al. Specific dopaminergic neurons for the formation of labile aversive memory. Curr. Biol. 20, 1445–1451 (2010)

    Article  CAS  Google Scholar 

  11. Mizunami, M. & Matsumoto, Y. Roles of aminergic neurons in formation and recall of associative memory in crickets. Front. Behav. Neurosci. 4, 172 (2010)

    PubMed  PubMed Central  Google Scholar 

  12. Hammer, M. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366, 59–63 (1993)

    Article  ADS  CAS  Google Scholar 

  13. Schroll, C. et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747 (2006)

    Article  CAS  Google Scholar 

  14. Yarali, A. & Gerber, B. A neurogenetic dissociation between punishment-, reward-, and relief-learning in Drosophila. Front. Behav. Neurosci. 4, 189 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Krashes, M. J. et al. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139, 416–427 (2009)

    Article  CAS  Google Scholar 

  16. Kim, Y. C., Lee, H. G. & Han, K. A. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J. Neurosci. 27, 7640–7647 (2007)

    Article  CAS  Google Scholar 

  17. Selcho, M., Pauls, D., Han, K. A., Stocker, R. F. & Thum, A. S. The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS ONE 4, e5897 (2009)

    Article  ADS  Google Scholar 

  18. Hamada, F. N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Sitaraman, D. et al. Serotonin is necessary for place memory in Drosophila. Proc. Natl Acad. Sci. USA 105, 5579–5584 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001)

    Article  CAS  Google Scholar 

  21. Pfeiffer, B. D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl Acad. Sci. USA 105, 9715–9720 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Monastirioti, M., Linn, C. E., Jr & White, K. Characterization of Drosophila tyramine β-hydroxylase gene and isolation of mutant flies lacking octopamine. J. Neurosci. 16, 3900–3911 (1996)

    Article  CAS  Google Scholar 

  23. Busch, S., Selcho, M., Ito, K. & Tanimoto, H. A map of octopaminergic neurons in the Drosophila brain. J. Comp. Neurol. 513, 643–667 (2009)

    Article  Google Scholar 

  24. Tanaka, N. K., Tanimoto, H. & Ito, K. Neuronal assemblies of the Drosophila mushroom body. J. Comp. Neurol. 508, 711–755 (2008)

    Article  Google Scholar 

  25. van Swinderen, B. & Andretic, R. Dopamine in Drosophila: setting arousal thresholds in a miniature brain. Proc. R. Soc. B 278, 906–913 (2011)

    Article  Google Scholar 

  26. Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010)

    Article  CAS  Google Scholar 

  27. Pfeiffer, B. D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010)

    Article  CAS  Google Scholar 

  28. Schnaitmann, C., Vogt, K., Triphan, T. & Tanimoto, H. Appetitive and aversive visual learning in freely moving Drosophila. Front. Behav. Neurosci. 4, 10 (2010)

    Article  Google Scholar 

  29. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods 6, 875–881 (2009)

    Article  CAS  Google Scholar 

  30. Séjourné, J. et al. Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila. Nature Neurosci. 14, 903–910 (2011)

    Article  Google Scholar 

  31. Kume, K. et al. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci. 25, 7377–7384 (2005)

    Article  CAS  Google Scholar 

  32. Friggi-Grelin, F. et al. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J. Neurobiol. 54, 618–627 (2003)

    Article  CAS  Google Scholar 

  33. Li, H., Chaney, S., Roberts, I. J., Forte, M. & Hirsh, J. Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10, 211–214 (2000)

    Article  CAS  Google Scholar 

  34. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    Article  CAS  Google Scholar 

  35. Robinson, I. M., Ranjan, R. & Schwarz, T. L. Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature 418, 336–340 (2002)

    Article  ADS  CAS  Google Scholar 

  36. Cole, S. H. et al. Two functional but non-complementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J. Biol. Chem. 280, 14948–14955 (2005)

    Article  CAS  Google Scholar 

  37. Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Bräcker, M. Feind, C. Murphy, C. Schnaitmann and T. Templier for technical assistance and experiments that inspired this study; P. Garrity, the Kyoto Drosophila Genetic Resource Center and the Bloomington Stock Center for fly stocks; and Y.Y. Ma, Z. Q. Meng, R. Menzel, A. Thum, S. Waddell and the members of the Tanimoto laboratory for discussion and/or critical reading of the manuscript. C.L., Y.A., N.Y. and P.-Y.P. were sponsored by a Chinese–European doctoral training program from Max-Planck-Gesellschaft and the Chinese Academy of Sciences, the Deutscher Akademischer Austausch Dienst, the Alexander von Humboldt Foundation, and the Région Île-de-France, respectively. This work was supported by the Agence Nationale pour la Recherche (T.P.), the Howard Hughes Medical Institute (G.M.R.), Bernstein Focus Learning from the Bundesministerium für Bildung und Forschung and the Max-Planck-Gesellschaft (H.T.).

Author information

Authors and Affiliations

Authors

Contributions

C.L., N.Y., Y.A. and H.T. designed and C.L. and N.Y. performed all the behavioural experiments in this study. P.Y.P., T.P. and H.T. designed in vivo imaging experiments, and P.Y.P. and T.P. devised a new gustatory stimulation method. P.Y.P. performed imaging experiments and analysed the data. B.D.P. and G.M.R. designed and generated the new transgenic flies (GAL4, GAL80, LexA and LexAop2-dTrpA1 lines). Y.A. and H.T. identified R58E02 by using a database of GAL4 expression patterns created by G.M.R. and the Janelia Farm Fly Light Project Team. A.B.F. and I.S. performed immunohistochemistry, and C.L., A.B.F. and H.T. analysed the microscopic data. C.L. and H.T. made the figures and wrote the paper with the help of all the other authors.

Corresponding author

Correspondence to Hiromu Tanimoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-9 and full legends for Supplementary Movies 1-5. (PDF 2556 kb)

Supplementary Movie 1

This file contains a movie showing the expression pattern of R58E02-GAL4 in the brain. (AVI 5628 kb)

Supplementary Movie 2

This file contains a movie showing the expression pattern of DDC-GAL4 in the central brain. (AVI 4362 kb)

Supplementary Movie 3

This file contains a movie showing the expression pattern of DDC-GAL4 with R58E02-GAL80 in the central brain. (AVI 3834 kb)

Supplementary Movie 4

This file contains a movie showing differential labelling of NP5272-GAL4 and R58E02-LexA in the cell body region of the PAM cluster. (AVI 116 kb)

Supplementary Movie 5

This file contains a movie showing differential labelling of TH-GAL4 and R58E02-LexA in the MB. (AVI 3819 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Plaçais, PY., Yamagata, N. et al. A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488, 512–516 (2012). https://doi.org/10.1038/nature11304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11304

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing