Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brain-wide neuronal dynamics during motor adaptation in zebrafish

Abstract

A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup and fictive motor adaptation.
Figure 2: Functional imaging during adaptive motor control in larval zebrafish.
Figure 3: Low-dimensional representation of neural network dynamics.
Figure 4: Four types of neural dynamics during adaptive motor control.
Figure 5: Anatomical locations of neurons and neuropil regions.
Figure 6: Effect of inferior olive lesions on visually induced motor adaptation.

Similar content being viewed by others

References

  1. Wall, P. D., Freeman, J. & Major, D. Dorsal horn cells in spinal and in freely moving rats. Exp. Neurol. 19, 519–529 (1967)

    Article  CAS  Google Scholar 

  2. Flusberg, B. A. et al. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nature Methods 5, 935–938 (2008)

    Article  CAS  Google Scholar 

  3. Naumann, E. A., Kampff, A. R., Prober, D. A., Schier, A. F. & Engert, F. Monitoring neural activity with bioluminescence during natural behavior. Nature Neurosci. 13, 513–520 (2010)

    Article  CAS  Google Scholar 

  4. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neurosci. 13, 1433–1440 (2010)

    Article  CAS  Google Scholar 

  5. Maimon, G., Straw, A. D. & Dickinson, M. H. Active flight increases the gain of visual motion processing in Drosophila . Nature Neurosci. 13, 393–399 (2010)

    Article  CAS  Google Scholar 

  6. Seelig, J. D. et al. Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nature Methods 7, 535–540 (2010)

    Article  CAS  Google Scholar 

  7. Fry, S. N., Rohrseitz, N., Straw, A. D. & Dickinson, M. H. Visual control of flight speed in Drosophila melanogaster . J. Exp. Biol. 212, 1120–1130 (2009)

    Article  Google Scholar 

  8. Möhl, B. Short-term learning during flight control in Locusta migratoria . J. Comp. Physiol. 163, 803–812 (1988)

    Article  Google Scholar 

  9. Wolf, R., Voss, A., Hein, S., Heisenberg, M. & Sullivan, G. D. Can a fly ride a bicycle? Phil. Trans. R. Soc. Lond. B 337, 261–269 (1992)

    Article  ADS  Google Scholar 

  10. du Lac, S., Raymond, J. L., Sejnowski, T. J. & Lisberger, S. G. Learning and memory in the vestibulo-ocular reflex. Annu. Rev. Neurosci. 18, 409–441 (1995)

    Article  CAS  Google Scholar 

  11. Raymond, J. L., Lisberger, S. G. & Mauk, M. D. The cerebellum: a neuronal learning machine? Science 272, 1126–1131 (1996)

    Article  ADS  CAS  Google Scholar 

  12. Gilbert, P. F. & Thach, W. T. Purkinje cell activity during motor learning. Brain Res. 128, 309–328 (1977)

    Article  CAS  Google Scholar 

  13. Körding, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004)

    Article  ADS  Google Scholar 

  14. Portugues, R. & Engert, F. Adaptive locomotor behavior in larval zebrafish. Front. Syst. Neurosci. 5, 72 (2011)

    Article  Google Scholar 

  15. Rock, I. & Smith, D. The optomotor response and induced motion of the self. Perception 15, 497–502 (1986)

    Article  CAS  Google Scholar 

  16. Orger, M. B., Smear, M. C., Anstis, S. M. & Baier, H. Perception of Fourier and non-Fourier motion by larval zebrafish. Nature Neurosci. 3, 1128–1133 (2000)

    Article  CAS  Google Scholar 

  17. Gahtan, E., Sankrithi, N., Campos, J. B. & O’Malley, D. M. Evidence for a widespread brain stem escape network in larval zebrafish. J. Neurophysiol. 87, 608–614 (2002)

    Article  Google Scholar 

  18. Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Article  ADS  CAS  Google Scholar 

  20. Higashijima, S.-I., Masino, M. A., Mandel, G. & Fetcho, J. R. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J. Neurophysiol. 90, 3986–3997 (2003)

    Article  Google Scholar 

  21. Bene, F. D. et al. Filtering of visual information in the tectum by an identified neural circuit. Science 330, 669–673 (2010)

    Article  ADS  Google Scholar 

  22. Douglass, A. D., Kraves, S., Deisseroth, K., Schier, A. F. & Engert, F. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr. Biol. 18, 1133–1137 (2008)

    Article  CAS  Google Scholar 

  23. Chong, M. and Drapeau, P. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish. Dev. Neurobiol. 67, 933–947 (2007)

    Article  Google Scholar 

  24. Orger, M. B., Kampff, A. R., Severi, K. E., Bollmann, J. H. & Engert, F. Control of visually guided behavior by distinct populations of spinal projection neurons. Nature Neurosci. 11, 327–333 (2008)

    Article  CAS  Google Scholar 

  25. O’Malley, D. M., Kao, Y. H. & Fetcho, J. R. Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17, 1145–1155 (1996)

    Article  Google Scholar 

  26. Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L. & Tank, D. W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007)

    Article  CAS  Google Scholar 

  27. Masino, M. A. & Fetcho, J. R. Fictive swimming motor patterns in wild type and mutant larval zebrafish. J. Neurophysiol. 93, 3177–3188 (2005)

    Article  Google Scholar 

  28. Cohen, A. H. & Wallén, P. The neuronal correlate of locomotion in fish. “fictive swimming” induced in an in vitro preparation of the lamprey spinal cord. Exp. Brain Res. 41, 11–18 (1980)

    Article  CAS  Google Scholar 

  29. Tallini, Y. N. et al. Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc. Natl Acad. Sci. USA 103, 4753–4758 (2006)

    Article  ADS  CAS  Google Scholar 

  30. Park, H. C. et al. Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev. Biol. 227, 279–293 (2000)

    Article  CAS  Google Scholar 

  31. Ito, M., Shiida, T., Yagi, N. & Yamamoto, M. Visual influence on rabbit horizontal vestibulo-ocular reflex presumably effected via the cerebellar flocculus. Brain Res. 65, 170–174 (1974)

    Article  CAS  Google Scholar 

  32. Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005)

    Article  CAS  Google Scholar 

  33. Yaksi, E., von Saint Paul, F., Niessing, J., Bundschuh, S. T. & Friedrich, R. W. Transformation of odor representations in target areas of the olfactory bulb. Nature Neurosci. 12, 474–482 (2009)

    Article  CAS  Google Scholar 

  34. Kinkhabwala, A. et al. A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proc. Natl Acad. Sci. USA 108, 1164–1169 (2011)

    Article  ADS  CAS  Google Scholar 

  35. Koyama, M., Kinkhabwala, A., Satou, C., Higashijima, S.-I. & Fetcho, J. Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain. Proc. Natl Acad. Sci. USA 108, 1170–1175 (2011)

    Article  ADS  CAS  Google Scholar 

  36. Bae, Y.-K. et al. Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev. Biol. 330, 406–426 (2009)

    Article  CAS  Google Scholar 

  37. Kani, S. et al. Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev. Biol. 343, 1–17 (2010)

    Article  CAS  Google Scholar 

  38. Volkmann, K., Chen, Y.-Y., Harris, M. P., Wullimann, M. F. & Köster, R. W. The zebrafish cerebellar upper rhombic lip generates tegmental hindbrain nuclei by long-distance migration in an evolutionary conserved manner. J. Comp. Neurol. 518, 2794–2817 (2010)

    PubMed  Google Scholar 

  39. Wullimann, M. F., Rupp, B. & Reichert, H. Neuroanatomy of the Zebrafish Brain: a Topological Atlas (Birkhäuser, 1996)

    Book  Google Scholar 

  40. Marr, D. A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969)

    Article  CAS  Google Scholar 

  41. Albus, J. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971)

    Article  Google Scholar 

  42. Boyden, E. S. & Raymond, J. L. Active reversal of motor memories reveals rules governing memory encoding. Neuron 39, 1031–1042 (2003)

    Article  CAS  Google Scholar 

  43. Matsumoto, N., Yoshida, M. & Uematsu, K. Effects of partial ablation of the cerebellum on sustained swimming in goldfish. Brain Behav. Evol. 70, 105–114 (2007)

    Article  Google Scholar 

  44. Roberts, B. L., van Rossem, A. & de Jager, S. The influence of cerebellar lesions on the swimming performance of the trout. J. Exp. Biol. 167, 171–178 (1992)

    CAS  PubMed  Google Scholar 

  45. Aizenberg, M. & Schuman, E. M. Cerebellar-dependent learning in larval zebrafish. J. Neurosci. 31, 8708–8712 (2011)

    Article  CAS  Google Scholar 

  46. Ma, L., Punnamoottil, B., Rinkwitz, S. & Baker, R. Mosaic hoxb4a neuronal pleiotropism in zebrafish caudal hindbrain. PloS ONE 4, e5944 (2009)

    Article  ADS  Google Scholar 

  47. De Zeeuw, C. I. et al. Microcircuitry and function of the inferior olive. Trends Neurosci. 21, 391–400 (1998)

    Article  CAS  Google Scholar 

  48. Miri, A. et al. Spatial gradients and multidimensional dynamics in a neural integrator circuit. Nature Neurosci. 14, 1150–1159 (2011)

    Article  CAS  Google Scholar 

  49. Bennett, A. F. Temperature and muscle. J. Exp. Biol. 115, 333–344 (1985)

    CAS  PubMed  Google Scholar 

  50. Ruta, V., Datta, S. R., Vasconcelos, M. L., Freeland, J., Looger, L. L. & Axel, R. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468, 686–690 (2010)

    Article  ADS  CAS  Google Scholar 

  51. Hieber, V., Dai, X., Foreman, M. & Goldman, D. Induction of α1-tubulin gene expression during development and regeneration of the fish central nervous system. J. Neurobiol. 37, 429–440 (1998)

    Article  CAS  Google Scholar 

  52. Mukamel, E. A., Nimmerjahn, A. & Schnitzer, M. J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Schoppik for teaching M.B.A. the fictive swimming preparation, to K.-H. Huang for carrying out spinal calcium green injections, and to M. Concha, R. Baker and L.-H. Ma for advice on anatomy. We thank M. Meister, B. Ölveczky, D. Wolpert, E. Mukamel, M. Yartsev, D. Schoppik, D. Hildebrand, E. Naumann, A. Kampff, P. Latham, T. Dunn and members of the Engert laboratory for useful discussions and comments on the manuscript. We thank P. Oteiza and R. Hellmiss for help with anatomy and figures, and A. Viel for use of laboratory space. M.B.A. thanks D. Wolpert and E. Santos for support. This work was supported by a Sir Henry Wellcome Fellowship from the Wellcome Trust (M.B.A.), a K99 grant no. 5K99NS62780-2 (M.B.O.) and National Institutes of Health grants 5R01EY014429 and RC2NS069407 (F.E.).

Author information

Authors and Affiliations

Authors

Contributions

M.B.A. developed the fictive virtual-reality paradigm, carried out the experiments, analysed the data, and built the setup and software. M.B.A., F.E. and R.P. conceived the experiments. M.B.O., D.N.R., J.M.L. and A.F.S. generated the transgenic elavl3:GCaMP2 fish line. M.B.O. generated the transgenic alpha tubulin:C3PA–GFP fish line. All authors discussed the data and the manuscript. M.B.A. wrote the manuscript with the assistance of R.P., M.B.O. and F.E.

Corresponding author

Correspondence to Florian Engert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text 1-4, Supplementary Figures 1-28 and additional references. (PDF 5762 kb)

Supplementary Movie

This movie shows motor adaptation. In this example, the fish ceases most locomotion during stimulus replay. (MOV 11398 kb)

Supplementary Movie 2

In this movie we see an example of calcium imaging during behavior and it shows the hindbrain including some cerebellum. (MOV 1561 kb)

Supplementary movie 3

This movie shows an example of registration of two-photon imaged plane to reference brain. (MOV 1540 kb)

Supplementary Movie 4

This movie shows anatomy stacks with functional data superimposed as in Fig. 6. (MOV 11524 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahrens, M., Li, J., Orger, M. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012). https://doi.org/10.1038/nature11057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11057

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing