Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trans-synaptic Teneurin signalling in neuromuscular synapse organization and target choice

Abstract

Synapse assembly requires trans-synaptic signals between the pre- and postsynapse1, but our understanding of the essential organizational molecules involved in this process remains incomplete2. Teneurin proteins are conserved, epidermal growth factor (EGF)-repeat-containing transmembrane proteins with large extracellular domains3. Here we show that two Drosophila Teneurins, Ten-m and Ten-a, are required for neuromuscular synapse organization and target selection. Ten-a is presynaptic whereas Ten-m is mostly postsynaptic; neuronal Ten-a and muscle Ten-m form a complex in vivo. Pre- or postsynaptic Teneurin perturbations cause severe synapse loss and impair many facets of organization trans-synaptically and cell autonomously. These include defects in active zone apposition, release sites, membrane and vesicle organization, and synaptic transmission. Moreover, the presynaptic microtubule and postsynaptic spectrin cytoskeletons are severely disrupted, suggesting a mechanism whereby Teneurins organize the cytoskeleton, which in turn affects other aspects of synapse development. Supporting this, Ten-m physically interacts with α-Spectrin. Genetic analyses of teneurin and neuroligin reveal that they have differential roles that synergize to promote synapse assembly. Finally, at elevated endogenous levels, Ten-m regulates target selection between specific motor neurons and muscles. Our study identifies the Teneurins as a key bi-directional trans-synaptic signal involved in general synapse organization, and demonstrates that proteins such as these can also regulate target selection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Teneurins are enriched at and interact across Drosophila neuromuscular synapses.
Figure 2: Teneurins affect the structure and function of the neuromuscular synapse.
Figure 3: Teneurin perturbation results in marked cytoskeletal disorganization.
Figure 4: High-level Ten-m expression regulates muscle target selection.

Similar content being viewed by others

References

  1. Williams, M. E., de Wit, J. & Ghosh, A. Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron 68, 9–18 (2010)

    CAS  Google Scholar 

  2. Giagtzoglou, N., Ly, C. V. & Bellen, H. J. Cell adhesion, the backbone of the synapse: “vertebrate” and “invertebrate” perspectives. Cold Spring Harb. Perspect. Biol. 1, a003079 (2009)

    Google Scholar 

  3. Young, T. R. & Leamey, C. A. Teneurins: important regulators of neural circuitry. Int. J. Biochem. Cell Biol. 41, 990–993 (2009)

    CAS  Google Scholar 

  4. Kenzelmann, D., Chiquet-Ehrismann, R., Leachman, N. T. & Tucker, R. P. Teneurin-1 is expressed in interconnected regions of the developing brain and is processed in vivo. BMC Dev. Biol. 8, 30 (2008)

    Google Scholar 

  5. Li, H., Bishop, K. M. & O’Leary, D. D. Potential target genes of EMX2 include Odz/Ten-M and other gene families with implications for cortical patterning. Mol. Cell. Neurosci. 33, 136–149 (2006)

    CAS  Google Scholar 

  6. Silva, J. P. et al. Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc. Natl Acad. Sci. USA 108, 12113–12118 (2011)

    CAS  Google Scholar 

  7. Leamey, C. A. et al. Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision. PLoS Biol. 5 e241 (2007)

    Google Scholar 

  8. Hong, W., Mosca, T. J. & Luo, L. Teneurins instruct synaptic partner matching in an olfactory map. Nature http://dx.doi.org/10.1038/nature10926 (this issue)

  9. Liebl, F. L. et al. Genome-wide P-element screen for Drosophila synaptogenesis mutants. J. Neurobiol. 66, 332–347 (2006)

    CAS  Google Scholar 

  10. Kurusu, M. et al. A screen of cell-surface molecules identifies leucine-rich repeat proteins as key mediators of synaptic target selection. Neuron 59, 972–985 (2008)

    CAS  Google Scholar 

  11. Zheng, L. et al. Drosophila Ten-m and Filamin affect motor neuron growth cone guidance. PLoS ONE 6, e22956 (2011)

    CAS  Google Scholar 

  12. Sone, M. et al. Synaptic development is controlled in the periactive zones of Drosophila synapses. Development 127, 4157–4168 (2000)

    CAS  Google Scholar 

  13. Wagh, D. A. et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49, 833–844 (2006)

    CAS  Google Scholar 

  14. Potter, C. J., Tasic, B., Russler, E. V., Liang, L. & Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141, 536–548 (2010)

    CAS  Google Scholar 

  15. Marrus, S. B., Portman, S. L., Allen, M. J., Moffat, K. G. & DiAntonio, A. Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J. Neurosci. 24, 1406–1415 (2004)

    CAS  Google Scholar 

  16. Wichmann, C. & Sigrist, S. J. The active zone T-bar—a plasticity module? J. Neurogenet. 24, 133–145 (2010)

    CAS  Google Scholar 

  17. Aberle, H. et al. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 (2002)

    CAS  Google Scholar 

  18. Owald, D. et al. A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila. J. Cell Biol. 188, 565–579 (2010)

    CAS  Google Scholar 

  19. Kittel, R. J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006)

    CAS  Google Scholar 

  20. Roos, J., Hummel, T., Ng, N., Klambt, C. & Davis, G. W. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26, 371–382 (2000)

    CAS  Google Scholar 

  21. Pielage, J., Fetter, R. D. & Davis, G. W. A postsynaptic spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction. J. Cell Biol. 175, 491–503 (2006)

    CAS  Google Scholar 

  22. Pielage, J., Bulat, V., Zuchero, J. B., Fetter, R. D. & Davis, G. W. Hts/Adducin controls synaptic elaboration and elimination. Neuron 69, 1114–1131 (2011)

    CAS  Google Scholar 

  23. Mosca, T. J. & Schwarz, T. L. The nuclear import of Frizzled2-C by Importins-β11 and α2 promotes postsynaptic development. Nature Neurosci. 13, 935–943 (2010)

    CAS  Google Scholar 

  24. Featherstone, D. E., Davis, W. S., Dubreuil, R. R. & Broadie, K. Drosophila α- and β-spectrin mutations disrupt presynaptic neurotransmitter release. J. Neurosci. 21, 4215–4224 (2001)

    CAS  Google Scholar 

  25. Miech, C., Pauer, H. U., He, X. & Schwarz, T. L. Presynaptic local signaling by a canonical wingless pathway regulates development of the Drosophila neuromuscular junction. J. Neurosci. 28, 10875–10884 (2008)

    CAS  Google Scholar 

  26. Craig, A. M. & Kang, Y. Neurexin–neuroligin signaling in synapse development. Curr. Opin. Neurobiol. 17, 43–52 (2007)

    CAS  Google Scholar 

  27. Li, J., Ashley, J., Budnik, V. & Bhat, M. A. Crucial role of Drosophila Neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 55, 741–755 (2007)

    CAS  Google Scholar 

  28. Banovic, D. et al. Drosophila Neuroligin 1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions. Neuron 66, 724–738 (2010)

    CAS  Google Scholar 

  29. Landgraf, M., Roy, S., Prokop, A., VijayRaghavan, K. & Bate, M. even-skipped determines the dorsal growth of motor axons in Drosophila. Neuron 22, 43–52 (1999)

    CAS  Google Scholar 

  30. Sanes, J. R. & Yamagata, M. Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25, 161–195 (2009)

    CAS  Google Scholar 

  31. Lilly, B. et al. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 267, 688–693 (1995)

    CAS  Google Scholar 

  32. Sun, B., Xu, P. & Salvaterra, P. M. Dynamic visualization of nervous system in live Drosophila. Proc. Natl Acad. Sci. USA 96, 10438–10443 (1999)

    CAS  Google Scholar 

  33. Luo, L., Liao, Y. J., Jan, L. Y. & Jan, Y. N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994)

    CAS  Google Scholar 

  34. Davis, G. W. & Goodman, C. S. Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature 392, 82–86 (1998)

    CAS  Google Scholar 

  35. Wodarz, A., Hinz, U., Engelbert, M. & Knust, E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82, 67–76 (1995)

    CAS  Google Scholar 

  36. Petersen, L. K. & Stowers, R. S. A Gateway MultiSite recombination cloning toolkit. PLoS ONE 6, e24531 (2011)

    CAS  Google Scholar 

  37. Loewen, C. A., Mackler, J. M. & Reist, N. E. Drosophila synaptotagmin I null mutants survive to early adulthood. Genesis 31, 30–36 (2001)

    CAS  Google Scholar 

  38. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007)

    CAS  Google Scholar 

  39. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    CAS  Google Scholar 

  40. Levine, A. et al. odd Oz: a novel Drosophila pair rule gene. Cell 77, 587–598 (1994)

    CAS  Google Scholar 

  41. Rakovitsky, N. et al. Drosophila Ten-a is a maternal pair-rule and patterning gene. Mech. Dev. 124, 911–924 (2007)

    CAS  Google Scholar 

  42. Laissue, P. P. et al. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J. Comp. Neurol. 405, 543–552 (1999)

    CAS  Google Scholar 

  43. Mackler, J. M., Drummond, J. A., Loewen, C. A., Robinson, I. M. & Reist, N. E. The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418, 340–344 (2002)

    CAS  Google Scholar 

  44. Zinsmaier, K. E., Eberle, K. K., Buchner, E., Walter, N. & Benzer, S. Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263, 977–980 (1994)

    CAS  Google Scholar 

  45. Parnas, D., Haghighi, A. P., Fetter, R. D., Kim, S. W. & Goodman, C. S. Regulation of postsynaptic structure and protein localization by the Rho-type guanine nucleotide exchange factor dPix. Neuron 32, 415–424 (2001)

    CAS  Google Scholar 

  46. Koh, Y. H., Popova, E., Thomas, U., Griffith, L. C. & Budnik, V. Regulation of DLG localization at synapses by CaMKII-dependent phosphorylation. Cell 98, 353–363 (1999)

    CAS  Google Scholar 

  47. Byers, T. J., Dubreuil, R., Branton, D., Kiehart, D. P. & Goldstein, L. S. Drosophila spectrin. II. Conserved features of the alpha-subunit are revealed by analysis of cDNA clones and fusion proteins. J. Cell Biol. 105, 2103–2110 (1987)

    CAS  Google Scholar 

  48. Van Vactor, D., Sink, H., Fambrough, D., Tsoo, R. & Goodman, C. S. Genes that control neuromuscular specificity in Drosophila. Cell 73, 1137–1153 (1993)

    CAS  Google Scholar 

  49. O’Neill, E. M., Rebay, I., Tjian, R. & Rubin, G. M. The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78, 137–147 (1994)

    Google Scholar 

  50. Patel, N. H., Schafer, B., Goodman, C. S. & Holmgren, R. The role of segment polarity genes during Drosophila neurogenesis. Genes Dev. 3, 890–904 (1989)

    CAS  Google Scholar 

  51. Byers, T. J., Husain-Chishti, A., Dubreuil, R. R., Branton, D. & Goldstein, L. S. Sequence similarity of the amino-terminal domain of Drosophila beta spectrin to alpha actinin and dystrophin. J. Cell Biol. 109, 1633–1641 (1989)

    CAS  Google Scholar 

  52. Ben-Yaacov, S., Le Borgne, R., Abramson, I., Schweisguth, F. & Schejter, E. D. Wasp, the Drosophila Wiskott-Aldrich syndrome gene homologue, is required for cell fate decisions mediated by Notch signaling. J. Cell Biol. 152, 1–13 (2001)

    CAS  Google Scholar 

  53. Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J. & Wu, C. F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 175, 179–191 (1994)

    CAS  Google Scholar 

  54. Martin, A. R. A further study of the statistical composition on the end-plate potential. J. Physiol. (Lond.) 130, 114–122 (1955)

    CAS  Google Scholar 

  55. Lnenicka, G. A., Spencer, G. M. & Keshishian, H. Effect of reduced impulse activity on the development of identified motor terminals in Drosophila larvae. J. Neurobiol. 54, 337–345 (2003)

    Google Scholar 

  56. Verstreken, P., Ohyama, T. & Bellen, H. J. FM 1-43 labeling of synaptic vesicle pools at the Drosophila neuromuscular junction. Methods Mol. Biol. 440, 349–369 (2008)

    CAS  Google Scholar 

  57. Markstein, M., Pitsouli, C., Villalta, C., Celniker, S. E. & Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nature Genet. 40, 476–483 (2008)

    CAS  Google Scholar 

  58. Higashi-Kovtun, M. E., Mosca, T. J., Dickman, D. K., Meinertzhagen, I. A. & Schwarz, T. L. Importin-β11 regulates synaptic phosphorylated mothers against decapentaplegic, and thereby influences synaptic development and function at the Drosophila neuromuscular junction. J. Neurosci. 30, 5253–5268 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Aberle, V. Budnik, A. DiAntonio, R. Dubreuil, D. Featherstone, N. Reist, T. Schwarz, S. Stowers, D. Van Vactor, R. Wides, the Bloomington Stock Center and the Developmental Studies Hybridoma Bank for fly stocks, antibodies and reagents; J. Perrino and D. Luginbuhl for technical assistance; K. Shen, K. Zinn, D. Banovic, D. Berns, Y. Chou, C. A. Frank, X. Gao, S. Hippenmeyer, K. Miyamichi, K. Sillar, B. Tasic, X. Yu and S. Zosimus for critiques. Supported by a National Institutes of Health (NIH) grant (R01 DC-005982 to L.L.), and Epilepsy, Neonatology and Developmental Biology Training Grants (NIH 5T32 NS007280 and HD007249 to T.J.M.). L.L. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.J.M. designed and performed all experiments (apart from electrophysiology). W.H. characterized and provided new reagents, and assisted in some experiments. V.S.D. and T.J.M. designed and V.S.D. performed electrophysiology experiments with assistance from T.J.M. V.F. provided new reagents. L.L. supervised the project. T.J.M. wrote the manuscript with feedback from all authors.

Corresponding author

Correspondence to Timothy J. Mosca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12, Supplementary Table 1 and Supplementary References (PDF 8134 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosca, T., Hong, W., Dani, V. et al. Trans-synaptic Teneurin signalling in neuromuscular synapse organization and target choice. Nature 484, 237–241 (2012). https://doi.org/10.1038/nature10923

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10923

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing