Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ON and OFF pathways in Drosophila motion vision

Abstract

Motion vision is a major function of all visual systems, yet the underlying neural mechanisms and circuits are still elusive. In the lamina, the first optic neuropile of Drosophila melanogaster, photoreceptor signals split into five parallel pathways, L1–L51. Here we examine how these pathways contribute to visual motion detection by combining genetic block and reconstitution of neural activity in different lamina cell types with whole-cell recordings from downstream motion-sensitive neurons2,3. We find reduced responses to moving gratings if L1 or L2 is blocked; however, reconstitution of photoreceptor input to only L1 or L2 results in wild-type responses. Thus, the first experiment indicates the necessity of both pathways, whereas the second indicates sufficiency of each single pathway. This contradiction can be explained by electrical coupling between L1 and L2, allowing for activation of both pathways even when only one of them receives photoreceptor input. A fundamental difference between the L1 pathway and the L2 pathway is uncovered when blocking L1 or L2 output while presenting moving edges of positive (ON) or negative (OFF) contrast polarity: blocking L1 eliminates the response to moving ON edges, whereas blocking L2 eliminates the response to moving OFF edges. Thus, similar to the segregation of photoreceptor signals in ON and OFF bipolar cell pathways in the vertebrate retina4, photoreceptor signals segregate into ON-L1 and OFF-L2 channels in the lamina of Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fly optic lobe and GAL4 driver lines.
Figure 2: Tangential cell responses to moving large field gratings of various contrasts.
Figure 3: Lamina cells L1 and L2 are electrically coupled.
Figure 4: Voltage responses of lobula plate tangential cells to moving edges of a single polarity (single example response

Similar content being viewed by others

References

  1. Meinertzhagen, I. A. & O’Neil, S. D. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster . J. Comp. Neurol. 305, 232–263 (1991)

    Article  CAS  PubMed  Google Scholar 

  2. Joesch, M., Plett, J., Borst, A. & Reiff, D. F. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster . Curr. Biol. 18, 368–374 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. Schnell, B. et al. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J. Neurophysiol. 103, 1646–1657 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. Wässle, H. Parallel processing in the mammalian retina. Nature Rev. Neurosci. 5, 747–757 (2004)

    Article  Google Scholar 

  5. Barlow, H. B., Hill, R. M. & Levick, W. R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.) 173, 377–407 (1964)

    Article  CAS  PubMed Central  Google Scholar 

  6. Dubner, R. & Zeki, S. M. Response properties and receptive fields of cells in an anatomically defined region of superior temporal sulcus in monkey. Brain Res. 35, 528–532 (1971)

    Article  CAS  PubMed  Google Scholar 

  7. Borst, A., Haag, J. & Reiff, D. F. Fly motion vision. Annu. Rev. Neurosci. 33, 49–70 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Strausfeld, N. J. Atlas of an Insect Brain (Springer, 1976)

    Book  Google Scholar 

  9. Hardie, R. C. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339, 704–706 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Reichardt, W. Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In Sensory Communication (ed. Rosenblith, W. A.) 303–317 (John Wiley & Sons, 1961)

    Google Scholar 

  11. Rister, J. et al. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster . Neuron 56, 155–170 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Katsov, A. Y. & Clandinin, T. R. Motion processing streams in Drosophila are behaviorally specialized. Neuron 59, 322–335 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu, Y., Nern, A., Zipursky, S. L. & Frye, M. A. Peripheral visual circuits functionally segregate motion and phototaxis behaviors in the fly. Curr. Biol. 19, 613–619 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)

    CAS  PubMed  Google Scholar 

  15. Luan, H., Peabody, N. C., Vinson, C. R. & White, B. H. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52, 425–436 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Gengs, C. et al. The target of Drosophila photoreceptor synaptic transmission is a histamine-gated chloride channel encoded by ort (hclA). J. Biol. Chem. 277, 42113–42120 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Gao, S. et al. The neural substrate of spectral preference in Drosophila . Neuron 60, 328–342 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Phelan, P., Bacon, J. P., Davies, J. A., Stebbings, L. A. & Todman, M. G. Innexins: a family of invertebrate gap-junction proteins. Trends Genet. 14, 348–349 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blagburn, J. M., Alexopoulos, H., Davies, J. A. & Bacon, J. P. Null mutation in shaking-B eliminates electrical, but not chemical, synapses in the Drosophila giant fiber system: a structural study. J. Comp. Neurol. 404, 449–458 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Haag, J. & Borst, A. Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly. J. Comp. Physiol. A 191, 445–454 (2005)

    Article  Google Scholar 

  22. Johns, D. C., Marx, R., Mains, R. E., O’Rourke, B. & Marban, E. Inducible genetic suppression of neuronal excitability. J. Neurosci. 19, 1691–1697 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laughlin, S. B. & Osorio, D. Mechanism for neural signal enhancement in the blowfly compound eye. J. Exp. Biol. 144, 113–146 (1989)

    Google Scholar 

  24. Reiff, D. F., Plett, J., Mank, M., Griesbeck, O. & Borst, A. Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila . Nature Neurosci. 13, 973–978 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. Takemura, S. Y., Lu, Z. & Meinertzhagen, I. A. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509, 493–513 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bausenwein, B., Dittrich, A. P. M. & Fischbach, K.-F. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res. 267, 17–28 (1992)

    Article  CAS  PubMed  Google Scholar 

  27. Bausenwein, B. & Fischbach, K.-F. Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell Tissue Res. 270, 25–35 (1992)

    Article  CAS  PubMed  Google Scholar 

  28. Hassenstein, B. & Reichardt, W. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Ruesselkaefers Chlorophanus. Z. Naturforsch. B 11b, 513–524 (1956)

    Article  Google Scholar 

  29. Sanes, J. R. & Zipursky, L. Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fischbach, K. F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

We thank C.-H. Lee, J. Rister and C. Schnaitmann for providing flies. Shaking B antibody was provided by J. Bacon. We thank W. Essbauer and C. Theile for technical assistance, and R. Schorner for the artwork in Fig. 1a.

Author information

Authors and Affiliations

Authors

Contributions

M.J. performed the blocking experiments and neurobiotin injections; B.S. did the rescue experiments; M.J. and B.S. did all fly work and data analysis; S.V.R. analysed expression patterns of the driver lines; D.F.R. and A.B. designed and supervised the study; and A.B. wrote the manuscript with the help of all authors.

Corresponding author

Correspondence to Alexander Borst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

The file contains Supplementary Figure 1 and legend. (PDF 160 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joesch, M., Schnell, B., Raghu, S. et al. ON and OFF pathways in Drosophila motion vision. Nature 468, 300–304 (2010). https://doi.org/10.1038/nature09545

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09545

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing