Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lateral competition for cortical space by layer-specific horizontal circuits

Abstract

The cerebral cortex constructs a coherent representation of the world by integrating distinct features of the sensory environment. Although these features are processed vertically across cortical layers, horizontal projections interconnecting neighbouring cortical domains allow these features to be processed in a context-dependent manner. Despite the wealth of physiological and psychophysical studies addressing the function of horizontal projections, how they coordinate activity among cortical domains remains poorly understood. We addressed this question by selectively activating horizontal projection neurons in mouse somatosensory cortex, and determined how the resulting spatial pattern of excitation and inhibition affects cortical activity. We found that horizontal projections suppress superficial layers while simultaneously activating deeper cortical output layers. This layer-specific modulation does not result from a spatial separation of excitation and inhibition, but from a layer-specific ratio between these two opposing conductances. Through this mechanism, cortical domains exploit horizontal projections to compete for cortical space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoinduced gamma activity in vivo and in vitro.
Figure 2: Vertical match of excitation and inhibition across layers.
Figure 3: Horizontal match of excitation and inhibition within layers.
Figure 4: Lateral suppression and feed-forward facilitation in vivo and in vitro.
Figure 5: Layer-specific excitation/inhibition ratio.

Similar content being viewed by others

References

  1. Binzegger, T., Douglas, R. J. & Martin, K. A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gottlieb, J. P. & Keller, A. Intrinsic circuitry and physiological properties of pyramidal neurons in rat barrel cortex. Exp. Brain Res. 115, 47–60 (1997)

    CAS  PubMed  Google Scholar 

  3. Petersen, C. C., Grinvald, A. & Sakmann, B. Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J. Neurosci. 23, 1298–1309 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Feldmeyer, D., Lubke, J. & Sakmann, B. Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J. Physiol. (Lond.) 575, 583–602 (2006)

    CAS  Google Scholar 

  5. Bosking, W. H., Zhang, Y., Schofield, B. & Fitzpatrick, D. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gilbert, C. D. & Wiesel, T. N. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9, 2432–2442 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Malach, R., Amir, Y., Harel, M. & Grinvald, A. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Natl Acad. Sci. USA 90, 10469–10473 (1993)

    CAS  PubMed  ADS  Google Scholar 

  8. Gilbert, C. D. & Wiesel, T. N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 30, 1689–1701 (1990)

    CAS  PubMed  Google Scholar 

  9. Lefort, S., Tomm, C., Floyd Sarria, J. C. & Petersen, C. C. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009)

    CAS  PubMed  Google Scholar 

  10. Thomson, A. M., West, D. C., Wang, Y. & Bannister, A. P. Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cereb. Cortex 12, 936–953 (2002)

    PubMed  Google Scholar 

  11. Ascoli, G. A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Rev. Neurosci. 9, 557–568 (2008)

    CAS  Google Scholar 

  12. Helmstaedter, M., Sakmann, B. & Feldmeyer, D. Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. Cereb. Cortex 19, 926–937 (2009)

    PubMed  Google Scholar 

  13. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000)

    CAS  PubMed  ADS  Google Scholar 

  14. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997)

    CAS  PubMed  Google Scholar 

  15. Fukuda, T., Kosaka, T., Singer, W. & Galuske, R. A. Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J. Neurosci. 26, 3434–3443 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hasenstaub, A. et al. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47, 423–435 (2005)

    CAS  PubMed  Google Scholar 

  17. Gray, C. M., Konig, P., Engel, A. K. & Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338, 334–337 (1989)

    CAS  PubMed  ADS  Google Scholar 

  18. Nase, G., Singer, W., Monyer, H. & Engel, A. K. Features of neuronal synchrony in mouse visual cortex. J. Neurophysiol. 90, 1115–1123 (2003)

    PubMed  Google Scholar 

  19. Jones, M. S. & Barth, D. S. Sensory-evoked high-frequency (gamma-band) oscillating potentials in somatosensory cortex of the unanesthetized rat. Brain Res. 768, 167–176 (1997)

    CAS  PubMed  Google Scholar 

  20. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003)

    CAS  PubMed  ADS  Google Scholar 

  21. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821 (2005)

    CAS  PubMed  ADS  Google Scholar 

  22. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005)

    CAS  PubMed  Google Scholar 

  23. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001)

    CAS  PubMed  Google Scholar 

  24. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci. 10, 663–668 (2007)

    CAS  PubMed  Google Scholar 

  25. Pouille, F., Marin-Burgin, A., Adesnik, H., Atallah, B. V. & Scanziani, M. Input normalization by global feedforward inhibition expands cortical dynamic range. Nature Neurosci. 12, 1577–1585 (2009)

    CAS  PubMed  Google Scholar 

  26. Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Atallah, B. V. & Scanziani, M. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 62, 566–577 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bartos, M. et al. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl Acad. Sci. USA 99, 13222–13227 (2002)

    CAS  PubMed  ADS  Google Scholar 

  29. Kampa, B. M., Letzkus, J. J. & Stuart, G. J. Cortical feed-forward networks for binding different streams of sensory information. Nature Neurosci. 9, 1472–1473 (2006)

    CAS  PubMed  Google Scholar 

  30. Manns, I. D., Sakmann, B. & Brecht, M. Sub- and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex. J. Physiol. (Lond.) 556, 601–622 (2004)

    CAS  Google Scholar 

  31. Douglas, R. & Martin, K. in The Synaptic Organization of the Brain (ed. Shepherd, G. M.) (Oxford Univ. Press, 1998)

    Google Scholar 

  32. Chance, F. S., Nelson, S. B. & Abbott, L. F. Complex cells as cortically amplified simple cells. Nature Neurosci. 2, 277–282 (1999)

    CAS  PubMed  Google Scholar 

  33. Anderson, J. S., Carandini, M. & Ferster, D. Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. J. Neurophysiol. 84, 909–926 (2000)

    CAS  PubMed  Google Scholar 

  34. Benucci, A., Frazor, R. A. & Carandini, M. Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron 55, 103–117 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Meeks, J. P. & Mennerick, S. Action potential initiation and propagation in CA3 pyramidal axons. J. Neurophysiol. 97, 3460–3472 (2007)

    PubMed  Google Scholar 

  36. Shu, Y., Duque, A., Yu, Y., Haider, B. & McCormick, D. A. Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J. Neurophysiol. 97, 746–760 (2007)

    PubMed  Google Scholar 

  37. Ramachandran, V. S. & Gregory, R. L. Perceptual filling in of artificially induced scotomas in human vision. Nature 350, 699–702 (1991)

    CAS  PubMed  ADS  Google Scholar 

  38. Hirsch, J. A. & Gilbert, C. D. Synaptic physiology of horizontal connections in the cat’s visual cortex. J. Neurosci. 11, 1800–1809 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tucker, T. R. & Katz, L. C. Spatiotemporal patterns of excitation and inhibition evoked by the horizontal network in layer 2/3 of ferret visual cortex. J. Neurophysiol. 89, 488–500 (2003)

    PubMed  Google Scholar 

  40. Field, D. J., Hayes, A. & Hess, R. F. Contour integration by the human visual system: evidence for a local ‘association field’. Vision Res. 33, 173–193 (1993)

    CAS  PubMed  Google Scholar 

  41. Shimegi, S., Ichikawa, T., Akasaki, T. & Sato, H. Temporal characteristics of response integration evoked by multiple whisker stimulations in the barrel cortex of rats. J. Neurosci. 19, 10164–10175 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mountcastle, V. B. & Powell, T. P. Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination. Bull. Johns Hopkins Hosp. 105, 201–232 (1959)

    CAS  PubMed  Google Scholar 

  43. Pouille, F. & Scanziani, M. Routing of spike series by dynamic circuits in the hippocampus. Nature 429, 717–723 (2004)

    CAS  PubMed  ADS  Google Scholar 

  44. Agmon, A. & Connors, B. W. Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41, 365–379 (1991)

    CAS  PubMed  Google Scholar 

  45. Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Palmer, L. M. & Stuart, G. J. Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci. 26, 1854–1863 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Carnevale, N. T. & Hines, M. L. The NEURON Book (Cambridge Univ. Press, 2006)

    Google Scholar 

Download references

Acknowledgements

We thank P. Abelkop for immunohistochemical labelling, J. Isaacson and R. Malinow for critical reading of the manuscript and the members of the Scanziani and Isaacson laboratory for advice during the course of the study. We thank K. Svoboda for pCAGGS-ChR2-Venus (Addgene 15753), C. Cepko for pCAG-GFP (Addgene 11150) and K. Deisseroth for sharing reagents. This work was supported in part by a grant from the National Institute for Mental Health (R01 MH70058). H.A. was supported by the Helen Hay Whitney Foundation. M.S. is an investigator of the Howard Hughes Medical Institute.

Author Contributions H.A. and M.S. designed the study. H.A. conducted all experiments and analysis. H.A. and M.S. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Scanziani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-7 with legends. (PDF 1596 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adesnik, H., Scanziani, M. Lateral competition for cortical space by layer-specific horizontal circuits. Nature 464, 1155–1160 (2010). https://doi.org/10.1038/nature08935

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08935

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing