Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synaptic depression enables neuronal gain control

Abstract

To act as computational devices, neurons must perform mathematical operations as they transform synaptic and modulatory input into output firing rate1. Experiments and theory indicate that neuronal firing typically represents the sum of synaptic inputs1,2,3, an additive operation, but multiplication of inputs is essential for many computations1. Multiplication by a constant produces a change in the slope, or gain, of the input–output relationship, amplifying or scaling down the sensitivity of the neuron to changes in its input. Such gain modulation occurs in vivo, during contrast invariance of orientation tuning4, attentional scaling5, translation-invariant object recognition6, auditory processing7 and coordinate transformations8,9. Moreover, theoretical studies highlight the necessity of gain modulation in several of these tasks9,10,11. Although potential cellular mechanisms for gain modulation have been identified, they often rely on membrane noise and require restrictive conditions to work3,12,13,14,15,16,17,18. Because nonlinear components are used to scale signals in electronics, we examined whether synaptic nonlinearities are involved in neuronal gain modulation. We used synaptic stimulation and the dynamic-clamp technique to investigate gain modulation in granule cells in acute slices of rat cerebellum. Here we show that when excitation is mediated by synapses with short-term depression (STD), neuronal gain is controlled by an inhibitory conductance in a noise-independent manner, allowing driving and modulatory inputs to be multiplied together. The nonlinearity introduced by STD transforms inhibition-mediated additive shifts in the input–output relationship into multiplicative gain changes. When granule cells were driven with bursts of high-frequency mossy fibre input, as observed in vivo19,20, larger inhibition-mediated gain changes were observed, as expected with greater STD. Simulations of synaptic integration in more complex neocortical neurons suggest that STD-based gain modulation can also operate in neurons with large dendritic trees. Our results establish that neurons receiving depressing excitatory inputs can act as powerful multiplicative devices even when integration of postsynaptic conductances is linear.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic depression enhances inhibition-mediated gain modulation.
Figure 2: Synaptic depression transforms additive shifts into multiplicative gain modulation.
Figure 3: Gain modulation in the presence of synaptic NMDAR conductances.
Figure 4: Gain modulation during broad bandwidth single mossy fibre stimulation.
Figure 5: Multiplicative gain modulation in a cortical layer 5 pyramidal neuron model.

Similar content being viewed by others

References

  1. Koch, C. Biophysics of Computation: Information Processing in Single Neurons 552 (Oxford Univ. Press, 1999)

    Google Scholar 

  2. Holt, G. R. & Koch, C. Shunting inhibition does not have a divisive effect on firing rates. Neural Comput. 9, 1001–1013 (1997)

    Article  CAS  Google Scholar 

  3. Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002)

    Article  CAS  Google Scholar 

  4. Anderson, J. S., Lampl, I., Gillespie, D. C. & Ferster, D. The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968–1972 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Treue, S. & Martinez Trujillo, J. C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Tovee, M. J., Rolls, E. T. & Azzopardi, P. Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. J. Neurophysiol. 72, 1049–1060 (1994)

    Article  CAS  Google Scholar 

  7. Ingham, N. J. & McAlpine, D. GABAergic inhibition controls neural gain in inferior colliculus neurons sensitive to interaural time differences. J. Neurosci. 25, 6187–6198 (2005)

    Article  CAS  Google Scholar 

  8. Brotchie, P. R., Andersen, R. A., Snyder, L. H. & Goodman, S. J. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375, 232–235 (1995)

    Article  ADS  CAS  Google Scholar 

  9. Yakusheva, T. A. et al. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54, 973–985 (2007)

    Article  CAS  Google Scholar 

  10. Salinas, E. & Abbott, L. F. Transfer of coded information from sensory to motor networks. J. Neurosci. 15, 6461–6474 (1995)

    Article  CAS  Google Scholar 

  11. Pouget, A. & Sejnowski, T. J. Spatial transformations in the parietal cortex using basis functions. J. Cogn. Neurosci. 9, 222–237 (1997)

    Article  CAS  Google Scholar 

  12. Hansel, D. & van Vreeswijk, C. How noise contributes to contrast invariance of orientation tuning in cat visual cortex. J. Neurosci. 22, 5118–5128 (2002)

    Article  CAS  Google Scholar 

  13. Mitchell, S. J. & Silver, R. A. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38, 433–445 (2003)

    Article  CAS  Google Scholar 

  14. Gabbiani, F., Krapp, H. G., Koch, C. & Laurent, G. Multiplicative computation in a visual neuron sensitive to looming. Nature 420, 320–324 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Tiesinga, P. H., Jose, J. V. & Sejnowski, T. J. Comparison of current-driven and conductance-driven neocortical model neurons with Hodgkin–Huxley voltage-gated channels. Phys. Rev. E 62, 8413–8419 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Murphy, B. K. & Miller, K. D. Multiplicative gain changes are induced by excitation or inhibition alone. J. Neurosci. 23, 10040–10051 (2003)

    Article  CAS  Google Scholar 

  17. Prescott, S. A. & De Koninck, Y. Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc. Natl Acad. Sci. USA 100, 2076–2081 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Fellous, J. M., Rudolph, M., Destexhe, A. & Sejnowski, T. J. Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122, 811–829 (2003)

    Article  CAS  Google Scholar 

  19. Rancz, E. A. et al. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450, 1245–1248 (2007)

    Article  ADS  CAS  Google Scholar 

  20. van Kan, P. L., Gibson, A. R. & Houk, J. C. Movement-related inputs to intermediate cerebellum of the monkey. J. Neurophysiol. 69, 74–94 (1993)

    Article  CAS  Google Scholar 

  21. Saviane, C. & Silver, R. A. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439, 983–987 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Semyanov, A., Walker, M. C., Kullmann, D. M. & Silver, R. A. Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci. 27, 262–269 (2004)

    Article  CAS  Google Scholar 

  23. DiGregorio, D. A., Nusser, Z. & Silver, R. A. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35, 521–533 (2002)

    Article  CAS  Google Scholar 

  24. Berends, M., Maex, R. & De Schutter, E. The effect of NMDA receptors on gain modulation. Neural Comput. 17, 2531–2547 (2005)

    Article  Google Scholar 

  25. Cathala, L., Misra, C. & Cull-Candy, S. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber–granule cell synapses. J. Neurosci. 20, 5899–5905 (2000)

    Article  CAS  Google Scholar 

  26. London, M. & Hausser, M. Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005)

    Article  CAS  Google Scholar 

  27. Kole, M. H. et al. Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neurosci. 11, 178–186 (2008)

    Article  CAS  Google Scholar 

  28. Arenz, A., Silver, R. A., Schaefer, A. T. & Margrie, T. W. The contribution of single synapses to sensory representation in vivo . Science 321, 977–980 (2008)

    Article  ADS  CAS  Google Scholar 

  29. Markram, H. & Tsodyks, M. Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382, 807–810 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Abbott, L. F., Varela, J. A., Sen, K. & Nelson, S. B. Synaptic depression and cortical gain control. Science 275, 220–224 (1997)

    Article  CAS  Google Scholar 

  31. Silver, R. A., Cull-Candy, S. G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. (Lond.) 494, 231–250 (1996)

    Article  CAS  Google Scholar 

  32. Cathala, L., Brickley, S., Cull-Candy, S. & Farrant, M. Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. J. Neurosci. 23, 6074–6085 (2003)

    Article  CAS  Google Scholar 

  33. Robinson, H. P. & Kawai, N. Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J. Neurosci. Methods 49, 157–165 (1993)

    Article  CAS  Google Scholar 

  34. Sharp, A. A., O’Neil, M. B., Abbott, L. F. & Marder, E. Dynamic clamp: computer-generated conductances in real neurons. J. Neurophysiol. 69, 992–995 (1993)

    Article  CAS  Google Scholar 

  35. D’Angelo, E., De Filippi, G., Rossi, P. & Taglietti, V. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J. Physiol. (Lond.) 482, 397–413 (1995)

    Article  Google Scholar 

  36. Jorntell, H. & Ekerot, C. F. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J. Neurosci. 26, 11786–11797 (2006)

    Article  Google Scholar 

  37. Hines, M. L. & Carnevale, N. T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997)

    Article  CAS  Google Scholar 

  38. Varela, J. A. et al. A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J. Neurosci. 17, 7926–7940 (1997)

    Article  CAS  Google Scholar 

  39. Gleeson, P., Steuber, V. & Silver, R. A. neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54, 219–235 (2007)

    Article  CAS  Google Scholar 

  40. Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond.) 500, 409–440 (1997)

    Article  CAS  Google Scholar 

  41. Gupta, A., Wang, Y. & Markram, H. Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000)

    Article  ADS  CAS  Google Scholar 

  42. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl Acad. Sci. USA 94, 719–723 (1997); erratum 94, 5495 (1997)

    Article  ADS  CAS  Google Scholar 

  43. Schwindt, P. C., O’Brien, J. A. & Crill, W. E. Quantitative analysis of firing properties of pyramidal neurons from layer 5 of rat sensorimotor cortex. J. Neurophysiol. 77, 2484–2498 (1997)

    Article  CAS  Google Scholar 

  44. Mainen, Z. F., Joerges, J., Huguenard, J. R. & Sejnowski, T. J. A model of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This was supported by the Wellcome Trust, MRC (G0400598) and EU (EUSynapse, LSHM-CT-2005-019055). R.A.S. is in receipt of a Wellcome Senior Research Fellowship. We thank P. Gleeson for help with neuroConstruct, D. Ward and R. Kanichay for their experimental support, D. Digregorio and P. Kirkby for discussions, and A. Arenz, D. Attwell, G. Billings, E. Chaigneau, D. DiGregorio, M. Farrant, F. Minneci and K. Vervaeke for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Angus Silver.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S5 and Supplementary Table S1. (PDF 1699 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothman, J., Cathala, L., Steuber, V. et al. Synaptic depression enables neuronal gain control. Nature 457, 1015–1018 (2009). https://doi.org/10.1038/nature07604

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07604

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing