Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila

Abstract

Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies1,2. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the ‘set point’ temperature in mammals. Although various temperature-gated TRP channels have been discovered3,4, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila5,6. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin7 and a potassium channel (Kir2.1)8 driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP–cAMP-dependent protein kinase A (cAMP–PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP–PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MB is required for TPB.
Figure 2: Contribution of MB lobes in TPB control.
Figure 3: cAMP–PKA signalling in the MB is needed for normal temperature preference.
Figure 4: cAMP–PKA in the MB is sufficient for normal TPBs.

Similar content being viewed by others

References

  1. Bear, M. F., Connors, B. W. & Paradiso, M. A. Neuroscience: exploring the brain (Lippincott Williams & Wilkins, Baltimore, MD, 2001)

  2. Zars, T. Two thermosensors in Drosophila have different behavioral functions. J. Comp. Physiol. A 187, 235–242 (2001)

    Article  CAS  Google Scholar 

  3. Liu, L., Yermolaieva, O., Johnson, W. A., Abboud, F. M. & Welsh, M. J. Identification and function of thermosensory neurons in Drosophila larvae. Nature Neurosci. 6, 267–273 (2003)

    Article  CAS  Google Scholar 

  4. Rosenzweig, M. et al. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 19, 419–424 (2005)

    Article  CAS  Google Scholar 

  5. Lee, Y. et al. Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nature Genet. 37, 305–310 (2005)

    Article  CAS  Google Scholar 

  6. Hong, S. T. et al. Histamine and its receptors modulate temperature-preference behaviors in Drosophila . J. Neurosci. 26, 7245–7256 (2006)

    Article  CAS  Google Scholar 

  7. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O’Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995)

    Article  CAS  Google Scholar 

  8. Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T. & Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523–1531 (2001)

    Article  CAS  Google Scholar 

  9. Keene, A. C. & Waddell, S. Drosophila olfactory memory: single genes to complex neural circuits. Nature Rev. Neurosci. 8, 341–354 (2007)

    Article  CAS  Google Scholar 

  10. Krashes, M. J., Keene, A. C., Leung, B., Armstrong, J. D. & Waddell, S. Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53, 103–115 (2007)

    Article  CAS  Google Scholar 

  11. Sayeed, O. & Benzer, S. Behavioral genetics of thermosensation and hygrosensation in Drosophila . Proc. Natl Acad. Sci. USA 93, 6079–6084 (1996)

    Article  ADS  CAS  Google Scholar 

  12. Thum, A. S. et al. Differential potencies of effector genes in adult Drosophila . J. Comp. Neurol. 498, 194–203 (2006)

    Article  CAS  Google Scholar 

  13. Rister, J. & Heisenberg, M. Distinct functions of neuronal synaptobrevin in developing and mature fly photoreceptors. J. Neurobiol. 66, 1271–1284 (2006)

    Article  CAS  Google Scholar 

  14. de Belle, J. S. & Heisenberg, M. Expression of Drosophila mushroom body mutations in alternative genetic backgrounds: a case study of the mushroom body miniature gene (mbm). Proc. Natl Acad. Sci. USA 93, 9875–9880 (1996)

    Article  ADS  CAS  Google Scholar 

  15. Davis, R. L. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu. Rev. Neurosci. 28, 275–302 (2005)

    Article  CAS  Google Scholar 

  16. Skoulakis, E. M. & Grammenoudi, S. Dunces and da Vincis: the genetics of learning and memory in Drosophila . Cell. Mol. Life Sci. 63, 975–988 (2006)

    Article  CAS  Google Scholar 

  17. Levin, L. R. et al. The Drosophila learning and memory gene rutabaga encodes a Ca2+/calmodulin-responsive adenylyl cyclase. Cell 68, 479–489 (1992)

    Article  CAS  Google Scholar 

  18. Davis, R. L. & Kiger, J. A. Dunce mutants of Drosophila melanogaster: mutants defective in the cyclic AMP phosphodiesterase enzyme system. J. Cell Biol. 90, 101–107 (1981)

    Article  CAS  Google Scholar 

  19. Ferris, J., Ge, H., Liu, L. & Roman, G. Go signaling is required for Drosophila associative learning. Nature Neurosci. 9, 1036–1040 (2006)

    Article  CAS  Google Scholar 

  20. Zars, T., Fischer, M., Schulz, R. & Heisenberg, M. Localization of a short-term memory in Drosophila . Science 288, 672–675 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Isabel, G., Pascual, A. & Preat, T. Exclusive consolidated memory phases in Drosophila . Science 304, 1024–1027 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Rodan, A. R., Kiger, J. A. & Heberlein, U. Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila . J. Neurosci. 22, 9490–9501 (2002)

    Article  CAS  Google Scholar 

  23. McBride, S. M. et al. Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster . Neuron 24, 967–977 (1999)

    Article  CAS  Google Scholar 

  24. Gray, J. M. et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430, 317–322 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Eisel, U. et al. Tetanus toxin light chain expression in Sertoli cells of transgenic mice causes alterations of the actin cytoskeleton and disrupts spermatogenesis. EMBO J. 12, 3365–3372 (1993)

    Article  CAS  Google Scholar 

  26. McGuire, S. E., Roman, G. & Davis, R. L. Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet. 20, 384–391 (2004)

    Article  CAS  Google Scholar 

  27. Riemensperger, T., Voller, T., Stock, P., Buchner, E. & Fiala, A. Punishment prediction by dopaminergic neurons in Drosophila . Curr. Biol. 15, 1953–1960 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Stafford for help in manuscript preparation. This work was supported by grants from the Brain Research Center of the 21st Century Frontier Program funded by the Korean Ministry of Science and Technology and a grant from the Science Research Center (SRC) for Functional Cellulomics of the Korea Science and Engineering Foundation (KOSEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeseob Kim.

Supplementary information

Supplementary Information

The file contains Supplementary Figures S1-S15 and Legends; Supplementary Tables S1-S7 (Statistical analysis on TPBs); Supplementary Results and Discussion (Mainly describe TPB genetic screen and involvement of other brain parts except MB in TPB control), and additional references. (PDF 4613 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, ST., Bang, S., Hyun, S. et al. cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila. Nature 454, 771–775 (2008). https://doi.org/10.1038/nature07090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07090

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing