Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrical activity in early neuronal development

Abstract

The construction of the brain during embryonic development was thought to be largely independent of its electrical activity. In this view, proliferation, migration and differentiation of neurons are driven entirely by genetic programs and activity is important only at later stages in refinement of connections. However, recent findings demonstrate that activity plays essential roles in early development of the nervous system. Activity has similar roles in the incorporation of newly born neurons in the adult nervous system, suggesting that there are general rules underlying activity-dependent development. The extensive involvement of activity makes it likely that it is required at all developmental stages as a necessary partner with genetic programs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous release of neurotransmitters from neuroblasts generates elevations of calcium in embryonic progenitor cells that suppress their proliferation.
Figure 2: Neurotransmitter modulation of embryonic neuronal migration by stage-specific regulation of calcium transients.
Figure 3: Calcium-spike-dependent homeostatic specification of embryonic neurotransmitter expression.
Figure 4: Turning of embryonic axonal growth cones and elaboration of dendritic arbours depend on elevation of intracellular calcium.
Figure 5: The partnership of gene expression with electrical activity.

Similar content being viewed by others

References

  1. Zito, K. & Svoboda, K. Activity-dependent synaptogenesis in the adult mammalian cortex. Neuron 35, 1015–1017 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Goda, Y. & Davis, G. W. Mechanisms of synapse assembly and disassembly. Neuron 40, 243–264 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Mennerick, S. & Zorumski, C. F. Neural activity and survival in the developing nervous system. Mol. Neurobiol. 22, 41–54 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. Vanhoutte, P. & Bading, H. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr. Opin. Neurobiol. 13, 366–371 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Webb, S. E., Moreau, M., Leclerc, C. & Miller, A. L. Calcium transients and neural induction in vertebrates. Cell Calcium 37, 375–385 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. LoTurco, J. J., Owens, D. F., Heath, M. J., Davis, M. B. & Kriegstein, A. R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298 (1995)

    Article  CAS  PubMed  Google Scholar 

  7. Liu, X., Wang, Q., Haydar, T. F. & Bordey, A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nature Neurosci. 8, 1179–1187 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Fiszman, M. L., Borodinsky, L. N. & Neale, J. H. GABA induces proliferation of immature cerebellar granule cells grown in vitro. Dev. Brain Res. 115, 1–8 (1999)

    Article  CAS  Google Scholar 

  9. Weissman, T. A., Riquelme, P. A., Ivic, L., Flint, A. C. & Kriegstein, A. R. Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43, 647–661 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Erhardt, N. M. & Sherwood, N. M. PACAP maintains cell cycling and inhibits apoptosis in chick neuroblasts. Mol. Cell. Endocrinol. 221, 121–134 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Gibbs, S. M. Regulation of neuronal proliferation and differentiation by nitric oxide. Mol. Neurobiol. 27, 107–120 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Komuro, H. & Rakic, P. Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17, 275–285 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. Demarque, M. et al. Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron 36, 1051–1061 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Manent, J. B. et al. A noncanonical release of GABA and glutamate modulates neuronal migration. J. Neurosci. 25, 4755–4765 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yacubova, E. & Komuro, H. Stage-specific control of neuronal migration by somatostatin. Nature 415, 77–81 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Bolteus, A. J. & Bordey, A. GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J. Neurosci. 24, 7623–7631 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, Y. et al. Reelin modulates NMDA receptor activity in cortical neurons. J. Neurosci. 25, 8209–8216 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haase, A. & Bicker, G. Nitric oxide and cyclic nucleotides are regulators of neuronal migration in an insect embryo. Development 130, 3977–3987 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Dallman, J. E., Davis, A. K. & Moody, W. J. Spontaneous activity regulates Ca2+-dependent K+ current expression in developing ascidian muscle. J. Physiol. (Lond.) 511, 683–693 (1998)

    Article  CAS  Google Scholar 

  20. Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Desarmenien, M. G. & Spitzer, N. C. Role of Ca and protein kinase C in development of the delayed rectifier potassium current in Xenopus spinal neurons. Neuron 7, 797–805 (1991)

    Article  CAS  PubMed  Google Scholar 

  22. Borodinsky, L. N. et al. Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429, 523–530 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ahmed, Z., Walker, P. S. & Fellows, R. E. Properties of neurons from dissociated fetal rat brain in serum-free culture. J. Neurosci. 3, 2448–2462 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nerbonne, J. M. & Gurney, A. M. Development of excitable membrane properties in mammalian sympathetic neurons. J. Neurosci. 9, 3272–3286 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McCobb, D. P., Best, P. M. & Beam, K. G. The differentiation of excitability in embryonic chick limb motoneurons. J. Neurosci. 10, 2974–2984 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brosenitsch, T. A. & Katz, D. M. Physiological patterns of electrical stimulation can induce neuronal gene expression by activating N-type calcium channels. J. Neurosci. 21, 2571–2579 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brosenitsch, T. A. & Katz, D. M. Expression of Phox2 transcription factors and induction of the dopaminergic phenotype in primary sensory neurons. Mol. Cell. Neurosci. 20, 447–457 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. Nishimaru, H., Restrepo, C. E., Ryge, J., Yanagawa, Y. & Kiehn, O. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc. Natl Acad. Sci. USA 102, 5245–5249 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mentis, G. Z. et al. Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord. Proc. Natl Acad. Sci. USA 102, 7344–7349 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brunelli, G. et al. Glutamatergic reinnervation through peripheral nerve graft dictates assembly of glutamatergic synapses at rat skeletal muscle. Proc. Natl Acad. Sci. USA 102, 8752–8757 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gomez, T. M., Snow, D. M. & Letourneau, P. C. Characterization of spontaneous Ca transients in nerve growth cones and their effect on growth cone migration. Neuron 14, 1233–1246 (1995)

    Article  CAS  PubMed  Google Scholar 

  32. Gomez, T. M. & Spitzer, N. C. In vivo regulation of axon extension and pathfinding by growth-cone Ca transients. Nature 397, 350–355 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Tang, F., Dent, E. W. & Kalil, K. Spontaneous calcium transients in developing cortical neurons regulate axon outgrowth. J. Neurosci. 23, 927–936 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Greka, A., Navarro, B., Oancea, E., Duggan, A. & Clapham, D. E. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nature Neurosci. 6, 837–845 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. Zheng, J. Q., Wan, J. J. & Poo, M. M. Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J. Neurosci. 16, 1140–1149 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hong, K., Nishiyama, M., Henley, J., Tessier-Lavigne, M. & Poo, M. Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403, 93–98 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Nishiyama, M. et al. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 423, 990–995 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wang, G. X. & Poo, M. Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434, 898–904 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Shim, S. et al. XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nature Neurosci. 8, 730–735 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. Li, Y. et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434, 894–898 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Ming, G., Henley, J., Tessier-Lavigne, M., Song, H. & Poo, M. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29, 441–452 (2001)

    Article  CAS  PubMed  Google Scholar 

  42. Gomez, T. M., Robles, E., Poo, M. & Spitzer, N. C. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–1987 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Ruthazer, E. S., Akerman, C. J. & Cline, H. T. Control of axon branch dynamics by correlated activity in vivo. Science 301, 66–70 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Hua, J. Y., Smear, M. C., Baier, H. & Smith, S. J. Regulation of axon growth in vivo by activity-based competition. Nature 434, 1022–1026 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. O'Leary, D. D. et al. A target-derived chemoattractant controls the development of the corticopontine projection by a novel mechanism of axon targeting. Dev. Suppl. 2123–130 (1991)

  46. Tang, F. & Kalil, K. Netrin-1 induces axon branching in developing cortical neurons by frequency-dependent calcium signaling pathways. J. Neurosci. 25, 6702–6715 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Itoh, K., Stevens, B., Schachner, M. & Fields, R. D. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses. Science 270, 1369–1372 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Hanson, M. G. & Landmesser, L. T. Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules. Neuron 43, 687–701 (2004)

    Article  CAS  PubMed  Google Scholar 

  49. Rajan, I. & Cline, H. T. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lohmann, C., Myhr, K. L. & Wong, R. O. Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418, 177–181 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Wong, W. T., Faulkner-Jones, B. E., Sanes, J. R. & Wong, R. O. Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci. 20, 5024–5036 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lohmann, C., Finski, A. & Bonhoeffer, T. Local Ca transients regulate the spontaneous motility of dendritic filopodia. Nature Neurosci. 8, 305–312 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. Redmond, L., Kashani, A. H. & Ghosh, A. Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34, 999–1010 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. Aizawa, H. et al. Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science 303, 197–202 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Altman, J. & Das, G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 (1965)

    Article  CAS  PubMed  Google Scholar 

  56. Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Esposito, M. S. et al. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J. Neurosci. 25, 10074–10086 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cameron, H. A., McEwen, B. S. & Gould, E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J. Neurosci. 15, 4687–4692 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Malberg, J. E., Eisch, A. J., Nestler, E. J. & Duman, R. S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Parent, J. M. et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl Acad. Sci. USA 96, 13427–13431 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saghatelyan, A., de Chevigny, A., Schachner, M. & Lledo, P. M. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nature Neurosci. 7, 347–356 (2004)

    Article  CAS  PubMed  Google Scholar 

  64. Deisseroth, K. et al. Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42, 535–552 (2004)

    Article  CAS  PubMed  Google Scholar 

  65. Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803–815 (2005)

    Article  CAS  PubMed  Google Scholar 

  66. Song, H. J., Stevens, C. F. & Gage, F. H. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nature Neurosci. 5, 438–445 (2002)

    Article  CAS  PubMed  Google Scholar 

  67. Ge, S. et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodeling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003)

    Article  CAS  Google Scholar 

  69. Watt, S. D., Gu, X., Smith, R. D. & Spitzer, N. C. Specific frequencies of spontaneous Ca2+ transients upregulate GAD 67 transcripts in embryonic spinal neurons. Mol. Cell. Neurosci. 16, 376–387 (2000)

    Article  CAS  PubMed  Google Scholar 

  70. Wu, G. Y. & Cline, H. T. Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279, 222–226 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Lautermilch, N. J. & Spitzer, N. C. Regulation of calcineurin by growth cone calcium waves controls neurite extension. J. Neurosci. 20, 315–325 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Blanton, M. G., Lo Turco, J. J. & Kriegstein, A. R. Endogenous neurotransmitter activates N-methyl-D-aspartate receptors on differentiating neurons in embryonic cortex. Proc. Natl Acad. Sci. USA 87, 8027–8030 (1990)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Flint, A. C., Dammerman, R. S. & Kriegstein, A. R. Endogenous activation of metabotropic glutamate receptors in neocortical development causes neuronal Ca oscillations. Proc. Natl Acad. Sci. USA 96, 12144–12149 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, D. D., Krueger, D. D. & Bordey, A. GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J. Physiol. (Lond.) 550, 785–800 (2003)

    Article  CAS  Google Scholar 

  75. Carey, M. B. & Matsumoto, S. G. Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev. Biol. 215, 298–313 (1999)

    Article  CAS  PubMed  Google Scholar 

  76. Gu, X., Olson, E. C. & Spitzer, N. C. Spontaneous neuronal calcium spikes and waves during early differentiation. J. Neurosci. 14, 6325–6335 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Conklin, M. W., Lin, M. S. & Spitzer, N. C. Local calcium transients contribute to disappearance of pFAK, focal complex removal and deadhesion of neuronal growth cones and fibroblasts. Dev. Biol. 287, 201–212 (2005)

    Article  CAS  PubMed  Google Scholar 

  78. Ashworth, R. & Bolsover, S. R. Spontaneous activity-independent intracellular calcium signals in the developing spinal cord of the zebrafish embryo. Dev. Brain Res. 139, 131–137 (2002)

    Article  CAS  Google Scholar 

  79. Owens, D. F. & Kriegstein, A. R. Patterns of intracellular calcium fluctuation in precursor cells of the neocortical ventricular zone. J. Neurosci. 18, 5374–5388 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mercer, A. R. & Hildebrand, J. G. Developmental changes in the electrophysiological properties and response characteristics of Manduca antennal-lobe neurons. J. Neurophysiol. 87, 2650–2663 (2002)

    Article  PubMed  Google Scholar 

  81. Jiang, S. A., Campusano, J. M., Su, H. & O'Dowd, D. K. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels. J. Neurophysiol. 94, 491–500 (2005)

    Article  CAS  PubMed  Google Scholar 

  82. Hanson, M. G. & Landmesser, L. T. Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. J. Neurosci. 23, 587–600 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. O'Donovan, M. J., Bonnot, A., Wenner, P. & Mentis, G. Z. Calcium imaging of network function in the developing spinal cord. Cell Calcium 37, 443–450 (2005)

    Article  CAS  PubMed  Google Scholar 

  84. Momose-Sato, Y., Sato, K. & Kamino, K. Optical identification of Ca-dependent action potentials transiently expressed in the embryonic rat brainstem. Neuroscience 90, 1293–1310 (1999)

    Article  CAS  PubMed  Google Scholar 

  85. Momose-Sato, Y., Mochida, H., Sasaki, S. & Sato, K. Depolarization waves in the embryonic CNS triggered by multiple sensory inputs and spontaneous activity: optical imaging with a voltage-sensitive dye. Neuroscience 116, 407–423 (2003)

    Article  CAS  PubMed  Google Scholar 

  86. Hunt, P. N., McCabe, A. K. & Bosma, M. M. Midline serotonergic neurones contribute to widespread synchronized activity in embryonic mouse hindbrain. J. Physiol. (Lond.) 566, 807–819 (2005)

    Article  CAS  Google Scholar 

  87. Garaschuk, O., Linn, J., Eilers, J. & Konnerth, A. Large-scale oscillatory calcium waves in the immature cortex. Nature Neurosci. 3, 452–459 (2000)

    Article  CAS  PubMed  Google Scholar 

  88. Corlew, R., Bosma, M. M. & Moody, W. J. Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones. J. Physiol. (Lond.) 560, 377–390 (2004)

    Article  CAS  Google Scholar 

  89. Ben-Ari, Y., Cherubini, E., Corradetti, R. & Gaiarsa, J. L. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.) 416, 303–325 (1989)

    Article  CAS  Google Scholar 

  90. Kasyanov, A. M., Safiulina, V. F., Voronin, L. L. & Cherubini, E. GABA-mediated giant depolarizing potentials as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus. Proc. Natl Acad. Sci. USA 101, 3967–3972 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stellwagen, D. & Shatz, C. J. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33, 357–367 (2002)

    Article  CAS  PubMed  Google Scholar 

  92. Torborg, C. L., Hansen, K. A. & Feller, M. B. High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nature Neurosci. 8, 72–78 (2005)

    Article  CAS  PubMed  Google Scholar 

  93. Cossart, R., Aronov, D. & Yuste, R. Attractor dynamics of network UP states in the neocortex. Nature 423, 283–288 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Ikegaya, Y. et al. Synfire chains and cortical songs: temporal modules of cortical activity. Science 304, 559–564 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Adelsberger, H., Garaschuk, O. & Konnerth, A. Cortical calcium waves in resting newborn mice. Nature Neurosci. 8, 988–990 (2005)

    Article  CAS  PubMed  Google Scholar 

  96. Borodinsky, L. N. & Spitzer, N. C. Activity-dependent neurotransmitter–receptor matching at the neuromuscular junction. Proc. Natl Acad. Sci. USA in the press.

Download references

Acknowledgements

I thank D. Berg, L. Borodinsky, M. Feller, A. Ghosh and K. Marek for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Spitzer.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spitzer, N. Electrical activity in early neuronal development. Nature 444, 707–712 (2006). https://doi.org/10.1038/nature05300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05300

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing