Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ATP is a mediator of chemosensory transduction in the central nervous system

Abstract

Extracellular signalling by the purine nucleotide ATP has long been associated with sensory function1,2,3,4,5,6,7,8. In the periphery, ATP mediates nociception3,4,5, mechanosensitivity3,6, thermal sensitivity7 and O2 chemosensitivity8. These processes share a common mechanism that involves the release of ATP to excite afferent fibres via activation of ionotropic P2X and/or metabotropic P2Y receptors. Chemosensors located in the brainstem are crucial for the maintenance of physiological levels of blood gases through the regulation of breathing9,10,11. Here we show that an increase in pCO2 in the arterial blood triggers the immediate release of ATP from three chemosensitive regions located on the ventral surface of the medulla oblongata. Blockade of ATP receptors at these sites diminishes the chemosensory control of breathing, suggesting that ATP release constitutes a key step in central chemosensory transduction. These new data suggest that ATP, a phylogenetically ancient, unique and simple molecule, has been widely used in the evolution of afferent systems to mediate distinct forms of sensory transduction not only in the periphery but also within the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rapid CO 2 -induced release of ATP from the ventral surface of the medulla.
Figure 2: CO 2 induces ATP release from the classical chemosensitive areas of the ventral medullary surface.
Figure 3: ATP receptor blockade on the chemosensitive areas of the ventral medullary surface attenuates the effect of CO 2 on breathing in rats.
Figure 4: ATP applied to the chemosensitive areas of the ventral medullary surface mimics the effect of CO 2 on breathing in rats.

Similar content being viewed by others

References

  1. Chen, C. C. et al. A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377, 428–431 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Lewis, C. et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377, 432–435 (1995)

    Article  ADS  CAS  Google Scholar 

  3. Cook, S. P., Vulchanova, L., Hargreaves, K. M., Elde, R. & McCleskey, E. W. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387, 505–508 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Cook, S. P. & McCleskey, E. W. Cell damage excites nociceptors through release of cytosolic ATP. Pain 95, 41–47 (2002)

    Article  CAS  Google Scholar 

  6. Vlaskovska, M. et al. P2X3 knock-out mice reveal a major sensory role for urothelially released ATP. J. Neurosci. 21, 5670–5677 (2001)

    Article  CAS  Google Scholar 

  7. Souslova, V. et al. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407, 1015–1017 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Rong, W. et al. Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J. Neurosci. 23, 11315–11321 (2003)

    Article  CAS  Google Scholar 

  9. Loeschcke, H. H. Central chemosensitivity and the reaction theory. J. Physiol. (Lond.) 32, 1–24 (1982)

    Article  Google Scholar 

  10. Feldman, J. L., Mitchell, G. S. & Nattie, E. E. Breathing: rhythmicity, plasticity, chemosensitivity. Annu. Rev. Neurosci. 26, 239–266 (2003)

    Article  CAS  Google Scholar 

  11. Mulkey, D. K. et al. Respiratory control by ventral surface chemoreceptor neurons in rats. Nature Neurosci. 7, 1360–1369 (2004)

    Article  CAS  Google Scholar 

  12. Llaudet, E., Botting, N. P., Crayston, J. A. & Dale, N. A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Biosens. Bioelectron. 18, 43–52 (2003)

    Article  CAS  Google Scholar 

  13. Llaudet, E., Hatz, S., Droniou, M. & Dale, N. Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal. Chem. 77, 3267–3273 (2005)

    Article  CAS  Google Scholar 

  14. Richter, D. W. & Spyer, K. M. Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci. 24, 464–472 (2001)

    Article  CAS  Google Scholar 

  15. Kawai, A., Ballantyne, D., Muckenhoff, K. & Scheid, P. Chemosensitive medullary neurones in the brainstem-spinal cord preparation of the neonatal rat. J. Physiol. (Lond.) 492, 277–292 (1996)

    Article  CAS  Google Scholar 

  16. Gourine, A. V., Atkinson, L., Deuchars, J. & Spyer, K. M. Purinergic signalling in the medullary mechanisms of respiratory control in the rat: respiratory neurones express the P2X2 receptor subunit. J. Physiol. (Lond.) 552, 197–211 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. E. Droniou for help with the initial development of the ATP sensor. We also thank the Biotechnology and Biological Sciences Research Council (K.M.S., A.V.G.) and the Wellcome Trust (N.D.) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Gourine.

Ethics declarations

Competing interests

N.D. and E.L. are founders of, and hold equity in, Sarissa Biomedical Ltd. Sarissa Biomedical Ltd. offers for sale ATP biosensors similar to some of those used in this article.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourine, A., Llaudet, E., Dale, N. et al. ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436, 108–111 (2005). https://doi.org/10.1038/nature03690

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03690

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing