Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A microRNA polycistron as a potential human oncogene

Abstract

To date, more than 200 microRNAs have been described in humans; however, the precise functions of these regulatory, non-coding RNAs remains largely obscure. One cluster of microRNAs, the mir-1792 polycistron, is located in a region of DNA that is amplified in human B-cell lymphomas1. Here we compared B-cell lymphoma samples and cell lines to normal tissues, and found that the levels of the primary or mature microRNAs derived from the mir-1792 locus are often substantially increased in these cancers. Enforced expression of the mir-1792 cluster acted with c-myc expression to accelerate tumour development in a mouse B-cell lymphoma model. Tumours derived from haematopoietic stem cells expressing a subset of the mir-1792 cluster and c-myc could be distinguished by an absence of apoptosis that was otherwise prevalent in c-myc-induced lymphomas. Together, these studies indicate that non-coding RNAs, specifically microRNAs, can modulate tumour formation, and implicate the mir-1792 cluster as a potential human oncogene.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mir-17 92 cluster shows increased expression in B-cell lymphoma samples and cell lines.
Figure 2: Overexpression of the mir-17 19b cluster accelerates c-myc -induced lymphomagenesis in mice.
Figure 3: Pathological and immunological analysis of lymphomas produced by cooperation between mir-17 19b and c-myc.

Similar content being viewed by others

References

  1. Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Ruvkun, G. & Giusto, J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature 338, 313–319 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Ambros, V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57, 49–57 (1989)

    Article  CAS  PubMed  Google Scholar 

  9. Chang, S., Johnston, R. J. Jr, Frokjaer-Jensen, C., Lockery, S. & Hobert, O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430, 785–789 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Johnston, R. J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845–849 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Knuutila, S. et al. DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am. J. Pathol. 152, 1107–1123 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tanzer, A. & Stadler, P. F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adams, J. M. et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533–538 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Schmitt, C. A. et al. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1, 289–298 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Hemann, M. T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nature Genet. 33, 396–400 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Hemann, M. T. et al. Suppression of tumorigenesis by the p53 target PUMA. Proc. Natl Acad. Sci. USA 101, 9333–9338 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Thomson, J. M., Parker, J., Perou, C. M. & Hammond, S. M. A custom microarray plateform for analysis of microRNA gene expression. Nature Methods 1, 47–53 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl Acad. Sci. USA 101, 11755–11760 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Metzler, M., Wilda, M., Busch, K., Viehmann, S. & Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosom. Cancer 39, 167–169 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Michael, M. Z., O'Connor, S. M., van Holst Pellekaan, N. G., Young, G. P. & James, R. J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882–891 (2003)

    CAS  PubMed  Google Scholar 

  26. Calin, G. A. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Di Cristofano, A., De Acetis, M., Koff, A., Cordon-Cardo, C. & Pandolfi, P. P. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genet. 27, 222–224 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Mayor, C. et al. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16, 1046–1047 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Hannon, Lowe and Hammond laboratories for discussions and input. We also thank Z. Xuan, N. Chen, N. Sheth and R. Sachidanandam for bioniformatic analysis. C. Perou and J. Leib provided advice and support for microarray methodologies, and A. Barnes and B. Boone gave assistance with mouse tissue procurement. We are grateful to H. Wendel, C. Scott, C. Marsden and C. Rosenthal, R. Karni, P. Moody and R. Whitaker, who provided advice and technical support. F. Slack coined the oncomiR nomenclature. L.H. and M.T.H. are Fellows of the Helen Hay Whitney Foundation. S.W.L. and C.C.-C. are supported by a program project grant from the NCI. G.J.H is supported by an Innovator Award from the US Army Breast Cancer Research Program and by grants from the DOD and NIH. S.M.H. is a General Motors Cancer Research Foundation Scholar, and J.M.T is a Frederick Gardner Cottrell Postdoctoral Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory J. Hannon or Scott M. Hammond.

Ethics declarations

Competing interests

Microarray data have been deposited in NCBI-GEO under accession numbers GSM45026–GSM45065 and GSE-2399. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Full cluster analysis of miRNA expression patterns in cell lines shown to carry the chromosome 13 amplicon. (PDF 275 kb)

Supplementary Figure S2

Comparison of expression of miRNAs from the mir17-92 cluster in Eµ-myc/mir17-19b tumors to Eµ-myc tumors and Karpas cells. (PDF 169 kb)

Supplementary Table S1

Full output of SAM analysis for cell line microarrays. (PDF 99 kb)

Supplementary Table S2

List of individual microRNAs tested for acceleration of Eµ-myc lymphomas. (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Thomson, J., Hemann, M. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005). https://doi.org/10.1038/nature03552

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03552

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing