Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Treating a novel plasticity defect rescues episodic memory in Fragile X model mice

Abstract

Episodic memory, a fundamental component of human cognition, is significantly impaired in autism. We believe we report the first evidence for this problem in the Fmr1-knockout (KO) mouse model of Fragile X syndrome and describe potentially treatable underlying causes. The hippocampus is critical for the formation and use of episodes, with semantic (cue identity) information relayed to the structure via the lateral perforant path (LPP). The unusual form of synaptic plasticity expressed by the LPP (lppLTP) was profoundly impaired in Fmr1-KOs relative to wild-type mice. Two factors contributed to this defect: (i) reduced GluN1 subunit levels in synaptic NMDA receptors and related currents, and (ii) impaired retrograde synaptic signaling by the endocannabinoid 2-arachidonoylglycerol (2-AG). Studies using a novel serial cue paradigm showed that episodic encoding is dependent on both the LPP and the endocannabinoid receptor CB1, and is strikingly impaired in Fmr1-KOs. Enhancing 2-AG signaling rescued both lppLTP and learning in the mutants. Thus, two consequences of the Fragile-X mutation converge on plasticity at one site in hippocampus to prevent encoding of a basic element of cognitive memory. Collectively, the results suggest a clinically plausible approach to treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hampton RR, Schwartz BL. Episodic memory in nonhumans: what, and where, is when? Curr Opin Neurobiol 2004; 14: 192–197.

    Article  CAS  Google Scholar 

  2. Tulving E. Episodic and semantic memory. In: Tulving E, Donaldson W (eds). Organization of Memory. Academic Press: New York, NY, USA, 1972, pp 381–403.

  3. Grober E, Hall CB, Lipton RB, Zonderman AB, Resnick SM, Kawas C. Memory impairment, executive dysfunction, and intellectual decline in preclinical Alzheimer's disease. J Int Neuropsychol Soc 2008; 14: 266–278.

    PubMed  PubMed Central  Google Scholar 

  4. Leyhe T, Muller S, Milian M, Eschweiler GW, Saur R. Impairment of episodic and semantic autobiographical memory in patients with mild cognitive impairment and early Alzheimer's disease. Neuropsychologia 2009; 47: 2464–2469.

    Article  Google Scholar 

  5. Xie SX, Libon DJ, Wang X, Massimo L, Moore P, Vesely L et al. Longitudinal patterns of semantic and episodic memory in frontotemporal lobar degeneration and Alzheimer's disease. J Int Neuropsychol Soc 2010; 16: 278–286.

    Article  Google Scholar 

  6. Schneider A, Hagerman RJ, Hessl D. Fragile X syndrome — from genes to cognition. Dev Disabil Res Rev 2009; 15: 333–342.

    Article  CAS  Google Scholar 

  7. Gaigg SB, Bowler DM, Ecker C, Calvo-Merino B, Murphy DG. Episodic recollection difficulties in ASD result from atypical relational encoding: behavioral and neural evidence. Autism Res 2015; 8: 317–327.

    Article  Google Scholar 

  8. Crane L, Goddard L. Episodic and semantic autobiographical memory in adults with autism spectrum disorders. J Autism Dev Disord 2008; 38: 498–506.

    Article  Google Scholar 

  9. Crane L, Lind SE, Bowler DM. Remembering the past and imagining the future in autism spectrum disorder. Memory 2013; 21: 157–166.

    Article  Google Scholar 

  10. Gaigg SB, Bowler DM, Gardiner JM. Episodic but not semantic order memory difficulties in autism spectrum disorder: evidence from the Historical Figures Task. Memory 2014; 22: 669–678.

    Article  Google Scholar 

  11. Hare DJ, Mellor C, Azmi S. Episodic memory in adults with autistic spectrum disorders: recall for self- versus other-experienced events. Res Dev Disabil 2007; 28: 317–329.

    Article  Google Scholar 

  12. Lind SE, Williams DM, Bowler DM, Peel A. Episodic memory and episodic future thinking impairments in high-functioning autism spectrum disorder: an underlying difficulty with scene construction or self-projection? Neuropsychology 2014; 28: 55–67.

    Article  Google Scholar 

  13. Souchay C, Guillery-Girard B, Pauly-Takacs K, Wojcik DZ, Eustache F. Subjective experience of episodic memory and metacognition: a neurodevelopmental approach. Front Behav Neurosci 2013; 7: 212.

    Article  Google Scholar 

  14. Burgess N, Maguire EA, O'Keefe J. The human hippocampus and spatial and episodic memory. Neuron 2002; 35: 625–641.

    Article  CAS  Google Scholar 

  15. Dickerson BC, Eichenbaum H. The episodic memory system: neurocircuitry and disorders. Neuropsychopharmacology 2010; 35: 86–104.

    Article  Google Scholar 

  16. Wixted JT, Squire LR, Jang Y, Papesh MH, Goldinger SD, Kuhn JR et al. Sparse and distributed coding of episodic memory in neurons of the human hippocampus. Proc Natl Acad Sci USA 2014; 111: 9621–9626.

    Article  CAS  Google Scholar 

  17. Reagh ZM, Yassa MA. Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans. Proc Natl Acad Sci USA 2014; 111: E4264–E4273.

    Article  CAS  Google Scholar 

  18. Wang W, Trieu BH, Palmer LC, Jia Y, Pham DT, Jung KM et al. A primary cortical input to hippocampus expresses a pathway-specific and endocannabinoid-dependent form of long-term potentiation. eNeuro 2016; 3: ENEURO.0160-16.2016.

  19. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258: 1946–1949.

    Article  CAS  Google Scholar 

  20. Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature 1997; 388: 773–778.

    Article  CAS  Google Scholar 

  21. Dolen G, Bear MF. Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome. J Physiol 2008; 586: 1503–1508.

    Article  CAS  Google Scholar 

  22. Bhakar AL, Dolen G, Bear MF. The pathophysiology of fragile X (and what it teaches us about synapses). Annu Rev Neurosci 2012; 35: 417–443.

    Article  CAS  Google Scholar 

  23. Santoro MR, Bray SM, Warren ST. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol 2012; 7: 219–245.

    Article  CAS  Google Scholar 

  24. Bramham CR, Sarvey JM. Endogenous activation of mu and delta-1 opioid receptors is required for long-term potentiation induction in the lateral perforant path: dependence on GABAergic inhibition. J Neurosci 1996; 16: 8123–8131.

    Article  CAS  Google Scholar 

  25. Breindl A, Derrick BE, Rodriguez SB, Martinez JL Jr. Opioid receptor-dependent long-term potentiation at the lateral perforant path-CA3 synapse in rat hippocampus. Brain Res Bull 1994; 33: 17–24.

    Article  CAS  Google Scholar 

  26. Wadell PM, Hagerman RJ, Hessl DR. Fragile X syndrome: psychiatric manifestations, assessment and emerging therapies. Curr Psychiatry Rev 2013; 9: 53–58.

    PubMed  PubMed Central  Google Scholar 

  27. Yu TW, Berry-Kravis E. Autism and fragile X syndrome. Semin Neurol 2014; 34: 258–265.

    Article  Google Scholar 

  28. Trieu BH, Kramar EA, Cox CD, Jia Y, Wang W, Gall CM et al. Pronounced differences in signal processing and synaptic plasticity between piriform-hippocampal network stages: a prominent role for adenosine. J Physiol 2015; 593: 2889–2907.

    Article  CAS  Google Scholar 

  29. Christie BR, Abraham WC. Differential regulation of paired-pulse plasticity following LTP in the dentate gyrus. Neuroreport 1994; 5: 385–388.

    Article  CAS  Google Scholar 

  30. Seese RR, Babayan AH, Katz AM, Cox CD, Lauterborn JC, Lynch G et al. LTP induction translocates cortactin at distant synapses in wild-type but not Fmr1 knock-out mice. J Neurosci 2012; 32: 7403–7413.

    Article  CAS  Google Scholar 

  31. Kahlfuss S, Simma N, Mankiewicz J, Bose T, Lowinus T, Klein-Hessling S et al. Immunosuppression by N-methyl-D-aspartate receptor antagonists is mediated through inhibition of Kv1.3 and KCa3.1 channels in T cells. Mol Cell Biol 2014; 34: 820–831.

    Article  Google Scholar 

  32. Larsen RS, Corlew RJ, Henson MA, Roberts AC, Mishina M, Watanabe M et al. NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat Neurosci 2011; 14: 338–344.

    Article  CAS  Google Scholar 

  33. Zhang J, Diamond JS. Subunit- and pathway-specific localization of NMDA receptors and scaffolding proteins at ganglion cell synapses in rat retina. J Neurosci 2009; 29: 4274–4286.

    Article  CAS  Google Scholar 

  34. Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH et al. Postsynaptic TrkC and presynaptic PTPsigma function as a bidirectional excitatory synaptic organizing complex. Neuron 2011; 69: 287–303.

    Article  CAS  Google Scholar 

  35. Seese RR, Chen LY, Cox CD, Schulz D, Babayan AH, Bunney WE et al. Synaptic abnormalities in the infralimbic cortex of a model of congenital depression. J Neurosci 2013; 33: 13441–13448.

    Article  CAS  Google Scholar 

  36. Jung KM, Clapper JR, Fu J, D'Agostino G, Guijarro A, Thongkham D et al. 2-arachidonoylglycerol signaling in forebrain regulates systemic energy metabolism. Cell Metab 2012; 15: 299–310.

    Article  CAS  Google Scholar 

  37. Jung KM, Astarita G, Zhu C, Wallace M, Mackie K, Piomelli D. A key role for diacylglycerol lipase-alpha in metabotropic glutamate receptor-dependent endocannabinoid mobilization. Mol Pharmacol 2007; 72: 612–621.

    Article  CAS  Google Scholar 

  38. Eadie BD, Cushman J, Kannangara TS, Fanselow MS, Christie BR. NMDA receptor hypofunction in the dentate gyrus and impaired context discrimination in adult Fmr1 knockout mice. Hippocampus 2012; 22: 241–254.

    Article  CAS  Google Scholar 

  39. Yun SH, Trommer BL. Fragile X mice: reduced long-term potentiation and N-Methyl-D-Aspartate receptor-mediated neurotransmission in dentate gyrus. J Neurosci Res 2011; 89: 176–182.

    Article  CAS  Google Scholar 

  40. Bostrom CA, Majaess NM, Morch K, White E, Eadie BD, Christie BR. Rescue of NMDAR-dependent synaptic plasticity in Fmr1 knock-out mice. Cereb Cortex 2015; 25: 271–279.

    Article  CAS  Google Scholar 

  41. Zhang F, Wang LP, Boyden ES, Deisseroth K. Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 2006; 3: 785–792.

    Article  CAS  Google Scholar 

  42. Roy DS, Arons A, Mitchell TI, Pignatelli M, Ryan TJ, Tonegawa S. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease. Nature 2016; 531: 508–512.

    Article  CAS  Google Scholar 

  43. Hanse E, Gustafsson B. Long-term potentiation and field EPSPs in the lateral and medial perforant paths in the dentate gyrus in vitro: a comparison. Eur J Neurosci 1992; 4: 1191–1201.

    Article  Google Scholar 

  44. Jia Y, Gall CM, Lynch G. Presynaptic BDNF promotes postsynaptic long-term potentiation in the dorsal striatum. J Neurosci 2010; 30: 14440–14445.

    Article  CAS  Google Scholar 

  45. Kim WR, Lee JW, Sun W, Lee SH, Choi JS, Jung MW. Effect of dentate gyrus disruption on remembering what happened where. Front Behav Neurosci 2015; 9: 170.

    PubMed  PubMed Central  Google Scholar 

  46. Wilson DI, Watanabe S, Milner H, Ainge JA. Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory. Hippocampus 2013; 23: 1280–1290.

    Article  Google Scholar 

  47. Dong S, Allen JA, Farrell M, Roth BL. A chemical-genetic approach for precise spatio-temporal control of cellular signaling. Mol Biosyst 2010; 6: 1376–1380.

    Article  CAS  Google Scholar 

  48. Zhu H, Roth BL. Silencing synapses with DREADDs. Neuron 2014; 82: 723–725.

    Article  CAS  Google Scholar 

  49. Zhu H, Pleil KE, Urban DJ, Moy SS, Kash TL, Roth BL. Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology 2014; 39: 1880–1892.

    Article  CAS  Google Scholar 

  50. Robinson S, Todd TP, Pasternak AR, Luikart BW, Skelton PD, Urban DJ et al. Chemogenetic silencing of neurons in retrosplenial cortex disrupts sensory preconditioning. J Neurosci 2014; 34: 10982–10988.

    Article  Google Scholar 

  51. Lopez AJ, Kramar E, Matheos DP, White AO, Kwapis J, Vogel-Ciernia A et al. Promoter-specific effects of DREADD modulation on hippocampal synaptic plasticity and memory formation. J Neurosci 2016; 36: 3588–3599.

    Article  CAS  Google Scholar 

  52. Stachniak TJ, Ghosh A, Sternson SM. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus—>midbrain pathway for feeding behavior. Neuron 2014; 82: 797–808.

    Article  CAS  Google Scholar 

  53. Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J et al. Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci 2014; 17: 577–585.

    Article  CAS  Google Scholar 

  54. Eldridge MA, Lerchner W, Saunders RC, Kaneko H, Krausz KW, Gonzalez FJ et al. Chemogenetic disconnection of monkey orbitofrontal and rhinal cortex reversibly disrupts reward value. Nat Neurosci 2016; 19: 37–39.

    Article  CAS  Google Scholar 

  55. Lex B, Hauber W. Disconnection of the entorhinal cortex and dorsomedial striatum impairs the sensitivity to instrumental contingency degradation. Neuropsychopharmacology 2010; 35: 1788–1796.

    Article  Google Scholar 

  56. Witter MP. Organization of the entorhinal-hippocampal system: a review of current anatomical data. Hippocampus 1993; 3: 33–44.

    PubMed  Google Scholar 

  57. Colgin LL, Kramar EA, Gall CM, Lynch G. Septal modulation of excitatory transmission in hippocampus. J Neurophysiol 2003; 90: 2358–2366.

    Article  Google Scholar 

  58. Gulyas AI, Cravatt BF, Bracey MH, Dinh TP, Piomelli D, Boscia F et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci 2004; 20: 441–458.

    Article  CAS  Google Scholar 

  59. Zhu H, Roth BL. DREADD: a chemogenetic GPCR signaling platform. Int J Neuropsychopharmacol 2014; 18: pyu007.

    Article  Google Scholar 

  60. Sternson SM, Roth BL. Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 2014; 37: 387–407.

    Article  CAS  Google Scholar 

  61. Davachi L, DuBrow S. How the hippocampus preserves order: the role of prediction and context. Trends Cogn Sci 2015; 19: 92–99.

    Article  Google Scholar 

  62. Devito LM, Eichenbaum H. Memory for the order of events in specific sequences: contributions of the hippocampus and medial prefrontal cortex. J Neurosci 2011; 31: 3169–3175.

    Article  CAS  Google Scholar 

  63. Manns JR, Howard MW, Eichenbaum H. Gradual changes in hippocampal activity support remembering the order of events. Neuron 2007; 56: 530–540.

    Article  CAS  Google Scholar 

  64. Hermann BP, Seidenberg M, Wyler A, Davies K, Christeson J, Moran M et al. The effects of human hippocampal resection on the serial position curve. Cortex 1996; 32: 323–334.

    Article  CAS  Google Scholar 

  65. Bowler DM, Limoges E, Mottron L. Different verbal learning strategies in autism spectrum disorder: evidence from the Rey Auditory Verbal Learning Test. J Autism Dev Disord 2009; 39: 910–915.

    Article  Google Scholar 

  66. Ghosh A, Michalon A, Lindemann L, Fontoura P, Santarelli L. Drug discovery for autism spectrum disorder: challenges and opportunities. Nat Rev Drug Discov 2013; 12: 777–790.

    Article  CAS  Google Scholar 

  67. Maurin T, Zongaro S, Bardoni B. Fragile X Syndrome: from molecular pathology to therapy. Neurosci Biobehav Rev 2014; 46(Pt 2): 242–255.

    Article  CAS  Google Scholar 

  68. Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 2015; 16: 595–605.

    Article  CAS  Google Scholar 

  69. McNaughton CH, Moon J, Strawderman MS, Maclean KN, Evans J, Strupp BJ. Evidence for social anxiety and impaired social cognition in a mouse model of fragile X syndrome. Behav Neurosci 2008; 122: 293–300.

    Article  Google Scholar 

  70. Santos AR, Kanellopoulos AK, Bagni C. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. Learn Mem 2014; 21: 543–555.

    Article  CAS  Google Scholar 

  71. Saario SM, Laitinen JT. Therapeutic potential of endocannabinoid-hydrolysing enzyme inhibitors. Basic Clin Pharmacol Toxicol 2007; 101: 287–293.

    Article  CAS  Google Scholar 

  72. Davis KL, Mohs RC. Enhancement of memory processes in Alzheimer's disease with multiple-dose intravenous physostigmine. Am J Psychiatry 1982; 139: 1421–1424.

    Article  CAS  Google Scholar 

  73. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry 1999; 66: 137–147.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by National Institutes of Health grants NS045260, NS085709 and HD089491 to CMG and GL, and DA-012413 and DA031387 to DP, Department of Defense Multidisciplinary University Research Initiative Grant N00014-101-0072 from the Office of Naval Research to GL; UL1 TR001414 fellowship to BMC, and National Science Foundation fellowship DGE0808392 to CDC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C M Gall or Gary Lynch.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Cox, B.M., Jia, Y. et al. Treating a novel plasticity defect rescues episodic memory in Fragile X model mice. Mol Psychiatry 23, 1798–1806 (2018). https://doi.org/10.1038/mp.2017.221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2017.221

This article is cited by

Search

Quick links