Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DISC1 causes associative memory and neurodevelopmental defects in fruit flies

Abstract

Originally found in a Scottish family with diverse mental disorders, the DISC1 protein has been characterized as an intracellular scaffold protein that associates with diverse binding partners in neural development. To explore its functions in a genetically tractable system, we expressed the human DISC1 in fruit flies (Drosophila melanogaster). As in mammalian neurons, DISC1 is localized to diverse subcellular domains of developing fly neurons including the nuclei, axons and dendrites. Overexpression of DISC1 impairs associative memory. Experiments with deletion/mutation constructs have revealed the importance of amino-terminal domain (46–290) for memory suppression whereas carboxyl domain (598–854) and the amino-terminal residues (1–45) including the nuclear localization signal (NLS1) are dispensable. DISC1 overexpression also causes suppression of axonal and dendritic branching of mushroom body neurons, which mediate a variety of cognitive functions in the fly brain. Analyses with deletion/mutation constructs reveal that protein domains 598–854 and 349–402 are both required for the suppression of axonal branching, while amino-terminal domains including NLS1 are dispensable. In contrast, NLS1 was required for the suppression of dendritic branching, suggesting a mechanism involving gene expression. Moreover, domain 403–596 is also required for the suppression of dendritic branching. We also show that overexpression of DISC1 suppresses glutamatergic synaptogenesis in developing neuromuscular junctions. Deletion/mutation experiments have revealed the importance of protein domains 403–596 and 349–402 for synaptic suppression, while amino-terminal domains including NLS1 are dispensable. Finally, we show that DISC1 functionally interacts with the fly homolog of Dysbindin (DTNBP1) via direct protein–protein interaction in developing synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Brandon NJ, Sawa A . Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12: 707–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Porteous DJ, Millar JK, Brandon NJ, Sawa A . DISC1 at 10: connecting psychiatric genetics and neuroscience. Trends Mol Med 2011; 17: 699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Narayan S, Nakajima K, Sawa A . DISC1: a key lead in studying cortical development and associated brain disorders. Neuroscientist 2013; 19: 451–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hikida T, Gamo NJ, Sawa A . DISC1 as a therapeutic target for mental illnesses. Expert Opin Therap Targets 2012; 16: 1151–1160.

    Article  CAS  Google Scholar 

  5. Porteous DJ, Thomson PA, Millar JK, Evans KL, Hennah W, Soares DC et al. DISC1 as a genetic risk factor for schizophrenia and related major mental illness: response to Sullivan. Mol Psychiatry 2014; 19: 141–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sullivan PF . Questions about DISC1 as a genetic risk factor for schizophrenia. Mol Psychiatry 2013; 18: 1050–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lessing D, Bonini NM . Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nat Rev Genet 2009; 10: 359–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bellen HJ, Tong C, Tsuda H . 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 2010; 11: 514–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wangler MF, Yamamoto S, Bellen HJ . Fruit flies in biomedical research. Genetics 2015; 199: 639–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cuthbert BN . Research domain criteria: toward future psychiatric nosology. Asian J Psychiatry 2014; 7: 4–5.

    Article  Google Scholar 

  11. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010; 167: 748–751.

    Article  PubMed  Google Scholar 

  12. Morris SE, Cuthbert BN . Research Domain Criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci 2012; 14: 29–37.

    PubMed  PubMed Central  Google Scholar 

  13. Doll CA, Broadie K . Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Front Cell Neurosci 2014; 8: 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sawamura N, Ando T, Maruyama Y, Fujimuro M, Mochizuki H, Honjo K et al. Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly. Mol Psychiatry 2008; 13: 1069.

    Article  Google Scholar 

  15. van Alphen B, van Swinderen B . Drosophila strategies to study psychiatric disorders. Brain Res Bullet 2013; 92: 1–11.

    Article  Google Scholar 

  16. Furukubo-Tokunaga K . Modeling schizophrenia in flies. Prog Brain Res 2009; 179: 107–115.

    Article  CAS  PubMed  Google Scholar 

  17. van der Voet M, Nijhof B, Oortveld MA, Schenck A . Drosophila models of early onset cognitive disorders and their clinical applications. Neurosci Biobehav Rev 2014; 46: 326–342.

    Article  PubMed  Google Scholar 

  18. Androschuk A, Al-Jabri B, Bolduc FV . From Learning to Memory: What Flies Can Tell Us about Intellectual Disability Treatment. Front Psychiatry 2015; 6: 85.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Heisenberg M . Mushroom body memoir: from maps to models. Nat Rev Neurosci 2003; 4: 266–275.

    Article  CAS  PubMed  Google Scholar 

  20. Furukubo-Tokunaga K, Ludlow ZN, Hirth F . Memory circuits in Drosophila. In: Giese PG (ed). The Memory Mechanisms in Health and Disease. World Scientific: London, UK, 2012.

    Google Scholar 

  21. Davis RL . Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Ann Rev Neurosci 2005; 28: 275–302.

    Article  CAS  PubMed  Google Scholar 

  22. Bord L, Wheeler J, Paek M, Saleh M, Lyons-Warren A, Ross CA et al. Primate disrupted-in-schizophrenia-1 (DISC1): high divergence of a gene for major mental illnesses in recent evolutionary history. Neurosci Res 2006; 56: 286–293.

    Article  CAS  PubMed  Google Scholar 

  23. Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S et al. Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry 2007; 12: 74–86.

    Article  CAS  PubMed  Google Scholar 

  24. Kurusu M, Awasaki T, Masuda-Nakagawa LM, Kawauchi H, Ito K, Furukubo-Tokunaga K . Embryonic and larval development of the Drosophila mushroom bodies: concentric layer subdivisions and the role of fasciclin II. Development 2002; 129: 409–419.

    CAS  PubMed  Google Scholar 

  25. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K et al. Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    Article  CAS  PubMed  Google Scholar 

  26. Leliveld SR, Bader V, Hendriks P, Prikulis I, Sajnani G, Requena JR et al. Insolubility of disrupted-in-schizophrenia 1 disrupts oligomer-dependent interactions with nuclear distribution element 1 and is associated with sporadic mental disease. J Neurosci 2008; 28: 3839–3845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee T, Luo L . Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 1999; 22: 451–461.

    Article  CAS  PubMed  Google Scholar 

  28. Kao CFLT . Genetic mosaic analyses of Drosophila brain by MARCM. In: Zhang BF, Waddell MR, S (eds). Drosophila Neurobiology. Cold Spring Harbor Laboratory Press: NY, USA, 2010 pp 125–139.

    Google Scholar 

  29. Honjo K, Furukubo-Tokunaga K . Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae. J Neurosci 2005; 25: 7905–7913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Honjo K, Furukubo-Tokunaga K . Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae. J Neurosci 2009; 29: 852–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramachandran PBV . Embryonic and larval neuromuscular junction: an overview with selected methods and protocols. In: Zhang BF, Waddell MR, S (eds). Drosophila Neurobiology. Cold Spring Harbor Laboratory Press: NY, USA, 2010 pp 93–123.

    Google Scholar 

  32. Dickman DK, Davis GW . The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 2009; 326: 1127–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006; 3: 995–1000.

    Article  PubMed  CAS  Google Scholar 

  34. Wang S, Yoo S, Kim HY, Wang M, Zheng C, Parkhouse W et al. Detection of in situ protein-protein complexes at the Drosophila larval neuromuscular junction using proximity ligation assay. J Vis Exp 2015; 95: 52139.

    Google Scholar 

  35. Vogelstein JT, Park Y, Ohyama T, Kerr RA, Truman JW, Priebe CE et al. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 2014; 344: 386–392.

    Article  CAS  PubMed  Google Scholar 

  36. Schurov IL, Handford EJ, Brandon NJ, Whiting PJ . Expression of disrupted in schizophrenia 1 (DISC1) protein in the adult and developing mouse brain indicates its role in neurodevelopment. Mol Psychiatry 2004; 9: 1100–1110.

    Article  CAS  PubMed  Google Scholar 

  37. Millar JK, James R, Christie S, Porteous DJ . Disrupted in schizophrenia 1 (DISC1): subcellular targeting and induction of ring mitochondria. Mol Cell Neurosci 2005; 30: 477–484.

    Article  CAS  PubMed  Google Scholar 

  38. Brandon NJ, Schurov I, Camargo LM, Handford EJ, Duran-Jimeniz B, Hunt P et al. Subcellular targeting of DISC1 is dependent on a domain independent from the Nudel binding site. Mol Cell Neurosci 2005; 28: 613–624.

    Article  CAS  PubMed  Google Scholar 

  39. Korth C . Aggregated proteins in schizophrenia and other chronic mental diseases: DISC1opathies. Prion 2012; 6: 134–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ottis P, Bader V, Trossbach SV, Kretzschmar H, Michel M, Leliveld SR et al. Convergence of two independent mental disease genes on the protein level: recruitment of dysbindin to cell-invasive disrupted-in-schizophrenia 1 aggresomes. Biol Psychiatry 2011; 70: 604–610.

    Article  CAS  PubMed  Google Scholar 

  41. Leliveld SR, Hendriks P, Michel M, Sajnani G, Bader V, Trossbach S et al. Oligomer assembly of the C-terminal DISC1 domain (640-854) is controlled by self-association motifs and disease-associated polymorphism S704C. Biochemistry 2009; 48: 7746–7755.

    Article  CAS  PubMed  Google Scholar 

  42. Ji B, Higa KK, Kim M, Zhou L, Young JW, Geyer MA et al. Inhibition of protein translation by the DISC1-Boymaw fusion gene from a Scottish family with major psychiatric disorders. Hum Mol Genet 2014; 23: 5683–5705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eykelenboom JE, Briggs GJ, Bradshaw NJ, Soares DC, Ogawa F, Christie S et al. A t(1;11) translocation linked to schizophrenia and affective disorders gives rise to aberrant chimeric DISC1 transcripts that encode structurally altered, deleterious mitochondrial proteins. Hum Mol Genet 2012; 21: 3374–3386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou X, Chen Q, Schaukowitch K, Kelsoe JR, Geyer MA . Insoluble DISC1-Boymaw fusion proteins generated by DISC1 translocation. Mol Psychiatry 2010; 15: 669–672.

    Article  CAS  PubMed  Google Scholar 

  45. Itakura M, Nakajima H, Kubo T, Semi Y, Kume S, Higashida S et al. Glyceraldehyde-3-phosphate dehydrogenase aggregates accelerate amyloid-beta amyloidogenesis in alzheimer disease. J Biol Chem 2015; 290: 26072–26087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakajima H, Amano W, Kubo T, Fukuhara A, Ihara H, Azuma YT et al. Glyceraldehyde-3-phosphate dehydrogenase aggregate formation participates in oxidative stress-induced cell death. J Biol Chem 2009; 284: 34331–34341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bilen J, Bonini NM . Drosophila as a model for human neurodegenerative disease. Ann Rev Genet 2005; 39: 153–171.

    Article  CAS  PubMed  Google Scholar 

  48. Bier E . Drosophila, the golden bug, emerges as a tool for human genetics. Nat Rev Genet 2005; 6: 9–23.

    Article  CAS  PubMed  Google Scholar 

  49. Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M et al. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry 2005; 62: 1205–1213.

    Article  CAS  PubMed  Google Scholar 

  50. Hennah W, Tuulio-Henriksson A, Paunio T, Ekelund J, Varilo T, Partonen T et al. A haplotype within the DISC1 gene is associated with visual memory functions in families with a high density of schizophrenia. Mol Psychiatry 2005; 10: 1097–1103.

    Article  CAS  PubMed  Google Scholar 

  51. Li W, Zhou Y, Jentsch JD, Brown RA, Tian X, Ehninger D et al. Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proc Natl Acad Sci USA 2007; 104: 18280–18285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Honda T, Lee CY, Yoshida-Kasikawa M, Honjo K, Furukubo-Tokunaga K . Induction of associative olfactory memory by targeted activation of single olfactory neurons in Drosophila larvae. Sci Rep 2014; 4: 4798.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Diegelmann S, Klagges B, Michels B, Schleyer M, Gerber B . Maggot learning and Synapsin function. J Exp Biol 2013; 216: 939–951.

    Article  CAS  PubMed  Google Scholar 

  54. Schleyer M, Saumweber T, Nahrendorf W, Fischer B, von Alpen D, Pauls D et al. A behavior-based circuit model of how outcome expectations organize learned behavior in larval Drosophila. Learn Mem 2011; 18: 639–653.

    Article  CAS  PubMed  Google Scholar 

  55. Guven-Ozkan T, Davis RL . Functional neuroanatomy of Drosophila olfactory memory formation. Learn Mem 2014; 21: 519–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Davis RL . Traces of Drosophila memory. Neuron 2011; 70: 8–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yasuyama K, Meinertzhagen IA, Schurmann FW . Synaptic organization of the mushroom body calyx in Drosophilamelanogaster. J Comp Neurol 2002; 445: 211–226.

    Article  PubMed  Google Scholar 

  58. Collins CA, DiAntonio A . Synaptic development: insights from Drosophila. Curr Opin Neurobiol 2007; 17: 35–42.

    Article  CAS  PubMed  Google Scholar 

  59. Menon KP, Carrillo RA, Zinn K . Development and plasticity of the Drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol 2013; 2: 647–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Charng WL, Yamamoto S, Bellen HJ . Shared mechanisms between Drosophila peripheral nervous system development and human neurodegenerative diseases. Curr Opin Neurobiol 2014; 27: 158–164.

    Article  CAS  PubMed  Google Scholar 

  61. Koles K, Budnik V . Wnt signaling in neuromuscular junction development. Cold Spring Harbor Perspect Biol 2012; 4: a008045.

    Article  CAS  Google Scholar 

  62. Wainman A, Creque J, Williams B, Williams EV, Bonaccorsi S, Gatti M et al. Roles of the Drosophila NudE protein in kinetochore function and centrosome migration. J Cell Sci 2009; 122: 1747–1758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang N, Inaki M, Cliffe A, Rorth P . Microtubules and Lis-1/NudE/dynein regulate invasive cell-on-cell migration in Drosophila. PLoS ONE 2012; 7: e40632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Siller KH, Serr M, Steward R, Hays TS, Doe CQ . Live imaging of Drosophila brain neuroblasts reveals a role for Lis1/dynactin in spindle assembly and mitotic checkpoint control. Mol Biol Cell 2005; 16: 5127–5140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu Z, Steward R, Luo L . Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nat Cell Biol 2000; 2: 776–783.

    Article  CAS  PubMed  Google Scholar 

  66. Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, Dunlop AJ et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat Neurosci 2010; 13: 327–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Awasaki T, Saito M, Sone M, Suzuki E, Sakai R, Ito K et al. The Drosophila trio plays an essential role in patterning of axons by regulating their directional extension. Neuron 2000; 26: 119–131.

    Article  CAS  PubMed  Google Scholar 

  68. Iyer SC, Wang D, Iyer EP, Trunnell SA, Meduri R, Shinwari R et al. The RhoGEF trio functions in sculpting class specific dendrite morphogenesis in Drosophila sensory neurons. PLoS ONE 2012; 7: e33634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang Q, Charych EI, Pulito VL, Lee JB, Graziane NM, Crozier RA et al. The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Mol Psychiatry 2011; 16: 1006–1023.

    Article  CAS  PubMed  Google Scholar 

  70. Kraut R, Menon K, Zinn K . A gain-of-function screen for genes controlling motor axon guidance and synaptogenesis in Drosophila. Curr Biol 2001; 11: 417–430.

    Article  CAS  PubMed  Google Scholar 

  71. Laruelle M . Schizophrenia: from dopaminergic to glutamatergic interventions. Curr Opin Pharmacol 2014; 14: 97–102.

    Article  CAS  PubMed  Google Scholar 

  72. Kantrowitz J, Javitt DC . Glutamatergic transmission in schizophrenia: from basic research to clinical practice. Curr Opin Psychiatry 2012; 25: 96–102.

    PubMed  PubMed Central  Google Scholar 

  73. Benson MA, Newey SE, Martin-Rendon E, Hawkes R, Blake DJ . Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem 2001; 276: 24232–24241.

    Article  CAS  PubMed  Google Scholar 

  74. Ghiani CA, Starcevic M, Rodriguez-Fernandez IA, Nazarian R, Cheli VT, Chan LN et al. The dysbindin-containing complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Mol Psychiatry 2010; 15: 204–115.

    Article  CAS  Google Scholar 

  75. Iizuka Y, Sei Y, Weinberger DR, Straub RE . Evidence that the BLOC-1 protein dysbindin modulates dopamine D2 receptor internalization and signaling but not D1 internalization. J Neurosci 2007; 27: 12390–12395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ito H, Morishita R, Shinoda T, Iwamoto I, Sudo K, Okamoto K et al. Dysbindin-1, WAVE2 and Abi-1 form a complex that regulates dendritic spine formation. Mol Psychiatry 2010; 15: 976–986.

    Article  CAS  PubMed  Google Scholar 

  77. Ma X, Fei E, Fu C, Ren H, Wang G . Dysbindin-1, a schizophrenia-related protein, facilitates neurite outgrowth by promoting the transcriptional activity of p53. Mol Psychiatry 2011; 16: 1105–1116.

    Article  CAS  PubMed  Google Scholar 

  78. Heider MR, Munson M . Exorcising the exocyst complex. Traffic 2012; 13: 898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mehta SQ, Hiesinger PR, Beronja S, Zhai RG, Schulze KL, Verstreken P et al. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Neuron 2005; 46: 219–232.

    Article  CAS  PubMed  Google Scholar 

  80. Jafar-Nejad H, Andrews HK, Acar M, Bayat V, Wirtz-Peitz F, Mehta SQ et al. Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev Cell 2005; 9: 351–363.

    Article  CAS  PubMed  Google Scholar 

  81. Shao L, Shuai Y, Wang J, Feng S, Lu B, Li Z et al. Schizophrenia susceptibility gene dysbindin regulates glutamatergic and dopaminergic functions via distinctive mechanisms in Drosophila. Proc Natl Acad Sci USA 2011; 108: 18831–18836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alves-Silva J, Sanchez-Soriano N, Beaven R, Klein M, Parkin J, Millard TH et al. Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins and EB1-dependent +TIPs (tip interacting proteins). J Neurosci 2012; 32: 9143–9158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee S, Nahm M, Lee M, Kwon M, Kim E, Zadeh AD et al. The F-actin-microtubule crosslinker Shot is a platform for Krasavietz-mediated translational regulation of midline axon repulsion. Development 2007; 134: 1767–1777.

    Article  CAS  PubMed  Google Scholar 

  84. Lee SA, Kim SM, Suh BK, Sun HY, Park YU, Hong JH et al. Disrupted-in-schizophrenia 1 (DISC1) regulates dysbindin function by enhancing its stability. J Biol Chem 2015; 290: 7087–7096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Daisuke Tanaka, Yuya Kawanaka, Yasushi Maruyama, Shinichiro Horigane and Takato Honda for their help in diverse aspects of this study. We also thank Ryusuke Niwa, Satoru Kobayashi, Fuminori Tsuruta, Yoshiki Hayashi and Ryoma Ohta for their help in biochemical analyses. We thank Developmental Studies Hybridoma Bank for antibodies and the Bloomington Stock Center for fly stocks. This study was supported by Grants-in-Aid for Scientific Research, MEXT, Japan, (KF-T) and NIH grants of MH-084018 (AS), MH-094268 Silvo O. Conte center (AS, AK), MH-069853 (AS), MH-085226 (AS), MH-088753 (AS), MH-092443 (AS), MH-091230 (AK), as well as grants from Stanley (AS), S-R (AS), RUSK (AS), NARSAD (AS, AK), JHU-BSI (AS), MSCRF (AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Furukubo-Tokunaga.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukubo-Tokunaga, K., Kurita, K., Honjo, K. et al. DISC1 causes associative memory and neurodevelopmental defects in fruit flies. Mol Psychiatry 21, 1232–1243 (2016). https://doi.org/10.1038/mp.2016.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.15

This article is cited by

Search

Quick links