Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gsx1 expression defines neurons required for prepulse inhibition

Abstract

In schizophrenia, cognitive overload is thought to reflect an inability to suppress non-salient information, a process which is studied using prepulse inhibition (PPI) of the startle response. PPI is reduced in schizophrenia and routinely tested in animal models and preclinical trials of antipsychotic drugs. However, the underlying neuronal circuitry is not well understood. We used a novel genetic screen in larval zebrafish to reveal the molecular identity of neurons that are required for PPI in fish and mice. Ablation or optogenetic silencing of neurons with developmental expression of the transcription factor genomic screen homeobox 1 (gsx1) produced profound defects in PPI in zebrafish, and PPI was similarly impaired in Gsx1 knockout mice. Gsx1-expressing neurons reside in the dorsal brainstem and form synapses closely apposed to neurons that initiate the startle response. Surprisingly, brainstem Gsx1 neurons are primarily glutamatergic despite their role in a functionally inhibitory pathway. As Gsx1 has an important role in regulating interneuron development in the forebrain, these findings reveal a molecular link between control of interneuron specification and circuits that gate sensory information across brain regions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rapoport JL, Giedd JN, Gogtay N . Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry 2012; 17: 1228–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jones P, Murray R, Rodgers B, Marmot M . Child developmental risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 1994; 344: 1398–1402.

    Article  CAS  PubMed  Google Scholar 

  3. Seidman LJ, Giuliano AJ, Meyer EC, Addington J, Cadenhead KS, Cannon TD et al. Neuropsychology of the prodrome to psychosis in the napls consortium: relationship to family history and conversion to psychosis. Arch Gen Psychiatry 2010; 67: 578–588.

    Article  PubMed  PubMed Central  Google Scholar 

  4. McGhie A, Chapman J . Disorders of attention and perception in early schizophrenia. Br J Med Psychol 1961; 34: 103–116.

    Article  CAS  PubMed  Google Scholar 

  5. Perry W, Braff DL . Information-processing deficits and thought disorder in schizophrenia. Am J Psychiatry 1994; 151: 363–367.

    Article  CAS  PubMed  Google Scholar 

  6. Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L . Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 1978; 15: 339–343.

    Article  CAS  PubMed  Google Scholar 

  7. Hoffman HS, Ison JR . Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 1980; 87: 175–189.

    Article  CAS  PubMed  Google Scholar 

  8. Ziermans TB, Schothorst PF, Sprong M, Magnee MJ, van Engeland H, Kemner C . Reduced prepulse inhibition as an early vulnerability marker of the psychosis prodrome in adolescence. Schizophr Res 2012; 134: 10–15.

    Article  PubMed  Google Scholar 

  9. Mowry BJ, Gratten J . The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Mol Psychiatry 2013; 18: 38–52.

    Article  CAS  PubMed  Google Scholar 

  10. Quednow BB, Frommann I, Berning J, Kuhn KU, Maier W, Wagner M . Impaired sensorimotor gating of the acoustic startle response in the prodrome of schizophrenia. Biol Psychiatry 2008; 64: 766–773.

    Article  PubMed  Google Scholar 

  11. Cadenhead KS, Swerdlow NR, Shafer KM, Diaz M, Braff DL . Modulation of the startle response and startle laterality in relatives of schizophrenic patients and in subjects with schizotypal personality disorder: evidence of inhibitory deficits. Am J Psychiatry 2000; 157: 1660–1668.

    Article  CAS  PubMed  Google Scholar 

  12. Swerdlow N, Weber M, Qu Y, Light G, Braff D . Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology 2008; 199: 331–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fendt M, Li L, Yeomans JS . Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology (Berl) 2001; 156: 216–224.

    Article  CAS  Google Scholar 

  14. Diederich K, Koch M . Role of the pedunculopontine tegmental nucleus in sensorimotor gating and reward-related behavior in rats. Psychopharmacology 2005; 179: 402–408.

    Article  CAS  PubMed  Google Scholar 

  15. Bosch D, Schmid S . Cholinergic mechanism underlying prepulse inhibition of the startle response in rats. Neuroscience 2008; 155: 326–335.

    Article  CAS  PubMed  Google Scholar 

  16. Nusbaum MP, Contreras D . Sensorimotor gating: startle submits to presynaptic inhibition. Curr Biol 2004; 14: R247–R249.

    Article  CAS  PubMed  Google Scholar 

  17. Zottoli SJ, Newman BC, Rieff HI, Winters DC . Decrease in occurrence of fast startle responses after selective Mauthner cell ablation in goldfish (Carassius auratus). J Comp Physiol A 1999; 184: 207–218.

    Article  CAS  PubMed  Google Scholar 

  18. Koch M, Lingenhöhl K, Pilz PKD . Loss of the acoustic startle response following neurotoxic lesions of the caudal pontine reticular formation: Possible role of giant neurons. Neuroscience 1992; 49: 617–625.

    Article  CAS  PubMed  Google Scholar 

  19. Burgess HA, Granato M . Sensorimotor gating in larval zebrafish. J Neurosci 2007; 27: 4984–4994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neumeister H, Szabo TM, Preuss T . Behavioral and physiological characterization of sensorimotor gating in the goldfish startle response. J Neurophysiol 2008; 99: 1493–1502.

    Article  PubMed  Google Scholar 

  21. Medan V, Preuss T . Dopaminergic-induced changes in Mauthner cell excitability disrupt prepulse inhibition in the startle circuit of goldfish. J Neurophysiol 2011; 106: 3195–3204.

    Article  CAS  PubMed  Google Scholar 

  22. Bergeron SA, Hannan MC, Codore H, Fero K, Li G, Moak ZB et al. Brain selective transgene expression in zebrafish using an NRSE derived motif. Front Neural Circuits 2012; 6: 110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A et al. Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 2008; 105: 1255–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Juven-Gershon T, Cheng S, Kadonaga JT . Rational design of a super core promoter that enhances gene expression. Nat Methods 2006; 3: 917–922.

    Article  CAS  PubMed  Google Scholar 

  25. Davison JM, Akitake CM, Goll MG, Rhee JM, Gosse N, Baier H et al. Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 2007; 304: 811–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burgess HA, Johnson SL, Granato M . Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav 2009; 8: 500–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akitake CM, Macurak M, Halpern ME, Goll MG . Transgenerational analysis of transcriptional silencing in zebrafish. Dev Biol 2011; 352: 191–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kinkhabwala A, Riley M, Koyama M, Monen J, Satou C, Kimura Y et al. A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proc Natl Acad Sci USA 2011; 108: 1164–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 2010; 141: 154–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yokogawa T, Hannan MC, Burgess HA . The dorsal raphe modulates sensory responsiveness during arousal in zebrafish. J Neurosci 2012; 32: 15205–15215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 2010; 463: 98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koga A, Cheah FS, Hamaguchi S, Yeo GH, Chong SS . Germline transgenesis of zebrafish using the medaka Tol1 transposon system. Dev Dyn 2008; 237: 2466–2474.

    Article  CAS  PubMed  Google Scholar 

  33. Appelbaum L, Wang G, Yokogawa T, Skariah GM, Smith SJ, Mourrain P et al. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons. Neuron 2010; 68: 87–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li H, Zeitler PS, Valerius MT, Small K, Potter SS . Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J 1996; 15: 714–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA . Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 2005; 436: 221–226.

    Article  CAS  PubMed  Google Scholar 

  36. Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY . Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 2007; 236: 1025–1035.

    Article  CAS  PubMed  Google Scholar 

  37. Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ . Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 2007; 124: 218–229.

    Article  CAS  PubMed  Google Scholar 

  38. Issa FA, O'Brien G, Kettunen P, Sagasti A, Glanzman DL, Papazian DM . Neural circuit activity in freely behaving zebrafish (Danio rerio). J Exp Biol 2011; 214(Pt 6): 1028–1038.

    Article  Google Scholar 

  39. Burgess HA, Granato M . Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 2007; 210: 2526–2539.

    Article  PubMed  Google Scholar 

  40. Fernandes AM, Fero K, Arrenberg AB, Bergeron SA, Driever W, Burgess HA . Deep brain photoreceptors control light-seeking behavior in zebrafish larvae. Curr Biol 2012; 22: 2042–2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheesman SE, Eisen JS . gsh1 demarcates hypothalamus and intermediate spinal cord in zebrafish. Gene Expr Patterns 2004; 5: 107–112.

    Article  CAS  PubMed  Google Scholar 

  42. Yong W, Otsuna H, Chi-Bin C, Hansen C . FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research. Pacific Visualization Symposium (PacificVis) 2012; IEEE 2012: 201–208.

    Google Scholar 

  43. Hayes L, Zhang Z, Albert P, Zervas M, Ahn S . Timing of Sonic hedgehog and Gli1 expression segregates midbrain dopamine neurons. J Comp Neurol 2011; 519: 3001–3018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hayes L, Ralls S, Wang H, Ahn S . Duration of Shh signaling contributes to mDA neuron diversity. Dev Biol 2013; 374: 115–126.

    Article  CAS  PubMed  Google Scholar 

  45. Higashijima S, Mandel G, Fetcho JR . Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. J Comp Neurol 2004; 480: 1–18.

    Article  CAS  PubMed  Google Scholar 

  46. Koyama M, Kinkhabwala A, Satou C, Higashijima S, Fetcho J . Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain. Proc Natl Acad Sci USA 2011; 108: 1170–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meyer MP, Trimmer JS, Gilthorpe JD, Smith SJ . Characterization of zebrafish PSD-95 gene family members. J Neurobiol 2005; 63: 91–105.

    Article  CAS  PubMed  Google Scholar 

  48. Kimmel CB, Sessions SK, Kimmel RJ . Morphogenesis and synaptogenesis of the zebrafish Mauthner neuron. J Comp Neurol 1981; 198: 101–120.

    Article  CAS  PubMed  Google Scholar 

  49. Moghaddam B, Javitt D . From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012; 37: 4–15.

    Article  CAS  PubMed  Google Scholar 

  50. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17: 887–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Geyer MA, Ellenbroek B . Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 1071–1079.

    Article  CAS  PubMed  Google Scholar 

  52. Wolman MA, Jain RA, Liss L, Granato M . Chemical modulation of memory formation in larval zebrafish. Proc Natl Acad Sci USA 2011; 108: 15468–15473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balciunas D, Davidson AE, Sivasubbu S, Hermanson SB, Welle Z, Ekker SC . Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 2004; 5: 62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Valerius MT, Li H, Stock JL, Weinstein M, Kaur S, Singh G et al. Gsh-1: a novel murine homeobox gene expressed in the central nervous system. Dev Dyn 1995; 203: 337–351.

    Article  CAS  PubMed  Google Scholar 

  55. Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma Q, Goulding M . Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat Neurosci 2006; 9: 770–778.

    Article  CAS  PubMed  Google Scholar 

  56. Satou C, Kimura Y, Hirata H, Suster ML, Kawakami K, Higashijima S . Transgenic tools to characterize neuronal properties of discrete populations of zebrafish neurons. Development 2013; 140: 3927–3931.

    Article  CAS  PubMed  Google Scholar 

  57. Pei Z, Wang B, Chen G, Nagao M, Nakafuku M, Campbell K . Homeobox genes Gsx1 and Gsx2 differentially regulate telencephalic progenitor maturation. Proc Natl Acad Sci USA 2011; 108: 1675–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang B, Long JE, Flandin P, Pla R, Waclaw RR, Campbell K et al. Loss of Gsx1 and Gsx2 function rescues distinct phenotypes in Dlx1/2 mutants. J Comp Neurol 2013; 521: 1561–1584.

    Article  CAS  PubMed  Google Scholar 

  59. Marín O . Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 2012; 13: 107–120.

    Article  CAS  PubMed  Google Scholar 

  60. Jones CK, Shannon HE . Lesions of the laterodorsal tegmental nucleus disrupt prepulse inhibition of the acoustic startle reflex. Pharmacol Biochem Behav 2004; 78: 229–237.

    Article  CAS  PubMed  Google Scholar 

  61. Swerdlow NR, Geyer MA. Prepulse inhibition of acoustic startle in rats after lesions of the pedunculopontine tegmental nucleus. Behav Neurosci 1993; 107: 104–117.

    Article  CAS  PubMed  Google Scholar 

  62. Machold R, Fishell G . Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 2005; 48: 17–24.

    Article  CAS  PubMed  Google Scholar 

  63. Li L, Korngut LM, Frost BJ, Beninger RJ . Prepulse inhibition following lesions of the inferior colliculus: prepulse intensity functions. Physiol Behav 1998; 65: 133–139.

    Article  CAS  PubMed  Google Scholar 

  64. Fendt M, Koch M, Schnitzler HU . Sensorimotor gating deficit after lesions of the superior colliculus. Neuroreport 1994; 5: 1725–1728.

    Article  CAS  PubMed  Google Scholar 

  65. Nakamura K, Koyama Y, Takahashi K, Tsurui H, Xiu Y, Ohtsuji M et al. Requirement of tryptophan hydroxylase during development for maturation of sensorimotor gating. J Mol Biol 2006; 363: 345–354.

    Article  CAS  PubMed  Google Scholar 

  66. Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, Xiao T et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 2007; 4: 323–326.

    Article  CAS  PubMed  Google Scholar 

  67. Granato M, van Eeden FJ, Schach U, Trowe T, Brand M, Furutani-Seiki M et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 1996; 123: 399–413.

    CAS  PubMed  Google Scholar 

  68. Neuhauss S, Biehlmaier O, Seeliger M, Das T, Kohler K, Harris W et al. Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci 1999; 19: 8603–8615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, Murphy C et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci USA 2008; 105: 9715–9720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gray PA . Transcription factors define the neuroanatomical organization of the medullary reticular formation. Front Neuroanat 2013; 7: 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leitner DS, Powers AS, Hoffman HS . The neural substrate of the startle response. Physiol Behav 1980; 25: 291–297.

    Article  CAS  PubMed  Google Scholar 

  72. Lingenhohl K, Friauf E . Giant neurons in the rat reticular formation: a sensorimotor interface in the elementary acoustic startle circuit? J Neurosci 1994; 14(Pt 1): 1176–1194.

    Article  Google Scholar 

  73. Carlson S, Willott JF . Caudal pontine reticular formation of C57BL/6J mice: responses to startle stimuli, inhibition by tones, and plasticity. J Neurophysiol 1998; 79: 2603–2614.

    Article  CAS  PubMed  Google Scholar 

  74. Davis M, Gendelman PM . Plasticity of the acoustic startle response in the acutely decerebrate rat. J Comp Physiol Psychol 1977; 91: 549–563.

    Article  CAS  PubMed  Google Scholar 

  75. Koch M, Fendt M, Kretschmer BD . Role of the substantia nigra pars reticulata in sensorimotor gating, measured by prepulse inhibition of startle in rats. Behav Brain Res 2000; 117: 153–162.

    Article  CAS  PubMed  Google Scholar 

  76. Koch M, Kungel M, Herbert H . Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp Brain Res 1993; 97: 71–82.

    Article  CAS  PubMed  Google Scholar 

  77. Clements JR, Grant S . Glutamate-like immunoreactivity in neurons of the laterodorsal tegmental and pedunculopontine nuclei in the rat. Neurosci Lett 1990; 120: 70–73.

    Article  CAS  PubMed  Google Scholar 

  78. Wang H-L, Morales M . Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 2009; 29: 340–358.

    Article  PubMed  Google Scholar 

  79. Eaton R, Farley R, Kimmel C, Schabtach E . Functional development in the Mauthner cell system of embryos and larvae of the zebra fish. J Neurobiol 1977; 8: 151–172.

    Article  CAS  PubMed  Google Scholar 

  80. Bardoni R, Torsney C, Tong CK, Prandini M, MacDermott AB . Presynaptic NMDA receptors modulate glutamate release from primary sensory neurons in rat spinal cord dorsal horn. J Neurosci 2004; 24: 2774–2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gardoni F, Marcello E, Di Luca M . Postsynaptic density-membrane associated guanylate kinase proteins (PSD-MAGUKs) and their role in CNS disorders. Neuroscience 2009; 158: 324–333.

    Article  CAS  PubMed  Google Scholar 

  82. Weiss SA, Preuss T, Faber DS . A role of electrical inhibition in sensorimotor integration. Proc Natl Acad Sci USA 2008; 105: 18047–18052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brown AS . Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev Neurobiol 2012; 72: 1272–1276.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Clarke MC, Harley M, Cannon M . The role of obstetric events in schizophrenia. Schizophr Bull 2006; 32: 3–8.

    Article  PubMed  Google Scholar 

  85. Lewis DA, Levitt P . Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002; 25: 409–432.

    Article  CAS  PubMed  Google Scholar 

  86. Szucsik JC, Witte DP, Li H, Pixley SK, Small KM, Potter SS . Altered forebrain and hindbrain development in mice mutant for the Gsh-2 homeobox gene. Dev Biol 1997; 191: 230–242.

    Article  CAS  PubMed  Google Scholar 

  87. Toresson H, Campbell K . A role for Gsh1 in the developing striatum and olfactory bulb of Gsh2 mutant mice. Development 2001; 128: 4769–4780.

    CAS  PubMed  Google Scholar 

  88. Yun K, Garel S, Fischman S, Rubenstein JL . Patterning of the lateral ganglionic eminence by the Gsh1 and Gsh2 homeobox genes regulates striatal and olfactory bulb histogenesis and the growth of axons through the basal ganglia. J Comp Neurol 2003; 461: 151–165.

    Article  CAS  PubMed  Google Scholar 

  89. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hong KS, Won H-H, Cho E-Y, Jeun HO, Cho S-S, Lee Y-S et al. Genome-widely significant evidence of linkage of schizophrenia to chromosomes 2p24.3 and 6q27 in an SNP-Based analysis of Korean families. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 647–652.

    Article  CAS  PubMed  Google Scholar 

  91. Perry W, Geyer MA, Braff DL . Sensorimotor gating and thought disturbance measured in close temporal proximity in schizophrenic patients. Arch Gen Psychiatry 1999; 56: 277–281.

    Article  CAS  PubMed  Google Scholar 

  92. Kumari V, Gray JA, Geyer MA, ffytche D, Soni W, Mitterschiffthaler MT et al. Neural correlates of tactile prepulse inhibition: a functional MRI study in normal and schizophrenic subjects. Psychiatry Res 2003; 122: 99–113.

    Article  PubMed  Google Scholar 

  93. Kumari V, Das M, Zachariah E, Ettinger U, Sharma T . Reduced prepulse inhibition in unaffected siblings of schizophrenia patients. Psychophysiology 2005; 42: 588–594.

    Article  PubMed  Google Scholar 

  94. Dawson ME, Schell AM, Hazlett EA, Nuechterlein KH, Filion DL . On the clinical and cognitive meaning of impaired sensorimotor gating in schizophrenia. Psychiatry Res 2000; 96: 187–197.

    Article  CAS  PubMed  Google Scholar 

  95. Braff DL, Grillon C, Geyer MA . Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 1992; 49: 206–215.

    Article  CAS  PubMed  Google Scholar 

  96. Kumari V, Soni W, Sharma T . Normalization of information processing deficits in schizophrenia with clozapine. Am J Psychiatry 1999; 156: 1046–1051.

    CAS  PubMed  Google Scholar 

  97. Hong LE, Summerfelt A, Wonodi I, Adami H, Buchanan RW, Thaker GK . Independent domains of inhibitory gating in schizophrenia and the effect of stimulus interval. Am J Psychiatry 2007; 164: 61–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Strykowski for zebrafish support and Victoria Carter and Daniel Abebe for mouse support. We also thank Andres Buonanno for assistance and useful discussions. This work was supported by the Intramural Research Program of the NICHD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H A Burgess.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergeron, S., Carrier, N., Li, G. et al. Gsx1 expression defines neurons required for prepulse inhibition. Mol Psychiatry 20, 974–985 (2015). https://doi.org/10.1038/mp.2014.106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.106

This article is cited by

Search

Quick links