Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity

Abstract

Endocannabinoids are released ‘on-demand’ on the basis of physiological need, and can be pharmacologically augmented by inhibiting their catabolic degradation. The endocannabinoid anandamide is degraded by the catabolic enzyme fatty acid amide hydrolase (FAAH). Anandamide is implicated in the mediation of fear behaviors, including fear extinction, suggesting that selectively elevating brain anandamide could modulate plastic changes in fear. Here we first tested this hypothesis with preclinical experiments employing a novel, potent and selective FAAH inhibitor, AM3506 (5-(4-hydroxyphenyl)pentanesulfonyl fluoride). Systemic AM3506 administration before extinction decreased fear during a retrieval test in a mouse model of impaired extinction. AM3506 had no effects on fear in the absence of extinction training, or on various non-fear-related measures. Anandamide levels in the basolateral amygdala were increased by extinction training and augmented by systemic AM3506, whereas application of AM3506 to amygdala slices promoted long-term depression of inhibitory transmission, a form of synaptic plasticity linked to extinction. Further supporting the amygdala as effect-locus, the fear-reducing effects of systemic AM3506 were blocked by intra-amygdala infusion of a CB1 receptor antagonist and were fully recapitulated by intra-amygdala infusion of AM3506. On the basis of these preclinical findings, we hypothesized that variation in the human FAAH gene would predict individual differences in amygdala threat-processing and stress-coping traits. Consistent with this, carriers of a low-expressing FAAH variant (385A allele; rs324420) exhibited quicker habituation of amygdala reactivity to threat, and had lower scores on the personality trait of stress-reactivity. Our findings show that augmenting amygdala anandamide enables extinction-driven reductions in fear in mouse and may promote stress-coping in humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cryan JF, Holmes A . The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4: 775–790.

    Article  CAS  Google Scholar 

  2. Quirk GJ, Pare D, Richardson R, Herry C, Monfils MH, Schiller D et al. Erasing fear memories with extinction training. J Neurosci 2010; 30: 14993–14997.

    Article  CAS  Google Scholar 

  3. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002; 418: 530–534.

    Article  CAS  Google Scholar 

  4. Kamprath K, Marsicano G, Tang J, Monory K, Bisogno T, Di Marzo V et al. Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci 2006; 26: 6677–6686.

    Article  CAS  Google Scholar 

  5. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 1990; 87: 1932–1936.

    Article  CAS  Google Scholar 

  6. Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 2003; 9: 76–81.

    Article  CAS  Google Scholar 

  7. Marsicano G, Lutz B . Neuromodulatory functions of the endocannabinoid system. J Endocrinol Invest 2006; 29: 27–46.

    Article  CAS  Google Scholar 

  8. Cravatt BF, Lichtman AH . Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr Opin Chem Biol 2003; 7: 469–475.

    Article  CAS  Google Scholar 

  9. de Oliveira Alvares L, Pasqualini Genro B, Diehl F, Molina VA, Quillfeldt JA . Opposite action of hippocampal CB1 receptors in memory reconsolidation and extinction. Neuroscience 2008; 154: 1648–1655.

    Article  CAS  Google Scholar 

  10. Kinsey SG, Long JZ, Cravatt BF, Lichtman AH . Fatty acid amide hydrolase and monoacylglycerol lipase inhibitors produce anti-allodynic effects in mice through distinct cannabinoid receptor mechanisms. J Pain 2010; 11: 1420–1428.

    Article  CAS  Google Scholar 

  11. Spradley JM, Guindon J, Hohmann AG . Inhibitors of monoacylglycerol lipase, fatty-acid amide hydrolase and endocannabinoid transport differentially suppress capsaicin-induced behavioral sensitization through peripheral endocannabinoid mechanisms. Pharmacol Res 2010; 62: 249–258.

    Article  CAS  Google Scholar 

  12. Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Pan B, Kinsey SG et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci 2010; 13: 1113–1119.

    Article  CAS  Google Scholar 

  13. Quirk GJ, Mueller D . Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 2008; 33: 56–72.

    Article  Google Scholar 

  14. Herry C, Ferraguti F, Singewald N, Letzkus JJ, Ehrlich I, Luthi A . Neuronal circuits of fear extinction. Eur J Neurosci 2010; 31: 599–612.

    Article  Google Scholar 

  15. Varvel SA, Wise LE, Niyuhire F, Cravatt BF, Lichtman AH . Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. Neuropsychopharmacology 2007; 32: 1032–1041.

    Article  CAS  Google Scholar 

  16. Hajos N, Kathuria S, Dinh T, Piomelli D, Freund TF . Endocannabinoid transport tightly controls 2-arachidonoyl glycerol actions in the hippocampus: effects of low temperature and the transport inhibitor AM404. Eur J Neurosci 2004; 19: 2991–2996.

    Article  Google Scholar 

  17. Tan H, Lauzon NM, Bishop SF, Chi N, Bechard M, Laviolette SR . Cannabinoid transmission in the basolateral amygdala modulates fear memory formation via functional inputs to the prelimbic cortex. J Neurosci 2011; 31: 5300–5312.

    Article  CAS  Google Scholar 

  18. Chhatwal JP, Davis M, Maguschak KA, Ressler KJ . Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 2005; 30: 516–524.

    Article  CAS  Google Scholar 

  19. Godlewski G, Alapafuja SO, Batkai S, Nikas SP, Cinar R, Offertaler L et al. Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects. Chem Biol 2010; 17: 1256–1266.

    Article  CAS  Google Scholar 

  20. Bashashati M, Storr MA, Nikas SP, Wood JT, Godlewski G, Liu J et al. Inhibiting fatty acid amide hydrolase normalizes endotoxin-induced enhanced gastrointestinal motility in mice. Br J Pharmacol 2012; 165: 1556–1571.

    Article  CAS  Google Scholar 

  21. Fowler CJ, Tiger G, Stenstrom A . Ibuprofen inhibits rat brain deamidation of anandamide at pharmacologically relevant concentrations. Mode of inhibition and structure–activity relationship. J Pharmacol Exp Ther 1997; 283: 729–734.

    CAS  PubMed  Google Scholar 

  22. Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 2002; 99: 10819–10824.

    Article  CAS  Google Scholar 

  23. Hefner K, Whittle N, Juhasz J, Norcross M, Karlsson RM, Saksida LM et al. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain. J Neurosci 2008; 28: 8074–8085.

    Article  CAS  Google Scholar 

  24. Whittle N, Hauschild M, Lubec G, Holmes A, Singewald N . Rescue of impaired fear extinction and normalization of cortico-amygdala circuit dysfunction in a genetic mouse model by dietary zinc restriction. J Neurosci 2010; 30: 13586–13596.

    Article  CAS  Google Scholar 

  25. Camp M, MacPherson KP, Lederle L, Graybeal C, Gaburro S, DeBrouse L et al. Genetic strain differences in learned fear inhibition associate with variation in neuroendocrine, autonomic and amygdala dendritic phenotypes. Neuropsychopharmacology 2012; 37: 1534–1547.

    Article  CAS  Google Scholar 

  26. Brigman JL, Wright T, Talani G, Prasad-Mulcare S, Jinde S, Seabold GK et al. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci 2010; 30: 4590–4600.

    Article  CAS  Google Scholar 

  27. Yang RJ, Mozhui K, Karlsson RM, Cameron HA, Williams RW, Holmes A . Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning. Neuropsychopharmacology 2008; 33: 2595–2604.

    Article  CAS  Google Scholar 

  28. Wellman CL, Izquierdo A, Garret JE, Martin KP, Carroll J, Millstein R et al. Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci 2007; 27: 684–691.

    Article  CAS  Google Scholar 

  29. Wiedholz LM, Owens WA, Horton RE, Feyder M, Karlsson RM, Hefner K et al. Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors. Mol Psychiatry 2008; 13: 631–640.

    Article  CAS  Google Scholar 

  30. Cryan JF, Markou A, Lucki I . Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 2002; 23: 238–245.

    Article  CAS  Google Scholar 

  31. Norcross M, Mathur P, Enoch AJ, Karlsson RM, Brigman JL, Cameron HA et al. Effects of adolescent fluoxetine treatment on fear-, anxiety- or stress-related behaviors in C57BL/6J or BALB/cJ mice. Psychopharmacology (Berl) 2008; 200: 413–424.

    Article  CAS  Google Scholar 

  32. Bellocchio L, Lafenetre P, Cannich A, Cota D, Puente N, Grandes P et al. Bimodal control of stimulated food intake by the endocannabinoid system. Nat Neurosci 2010; 13: 281–283.

    Article  CAS  Google Scholar 

  33. Mukhopadhyay B, Cinar R, Yin S, Liu J, Tam J, Godlewski G et al. Hyperactivation of anandamide synthesis and regulation of cell-cycle progression via cannabinoid type 1 (CB1) receptors in the regenerating liver. Proc Natl Acad Sci USA 2011; 108: 6323–6328.

    Article  CAS  Google Scholar 

  34. Patel S, Kingsley PJ, Mackie K, Marnett LJ, Winder DG . Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala. Neuropsychopharmacology 2009; 34: 2699–2709.

    Article  CAS  Google Scholar 

  35. Lafourcade M, Elezgarai I, Mato S, Bakiri Y, Grandes P, Manzoni OJ . Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS One 2007; 2: e709.

    Article  Google Scholar 

  36. Wang W, Sun D, Pan B, Roberts CJ, Sun X, Hillard CJ et al. Deficiency in endocannabinoid signaling in the nucleus accumbens induced by chronic unpredictable stress. Neuropsychopharmacology 2010; 35: 2249–2261.

    Article  CAS  Google Scholar 

  37. First M, Spitzer R, Gibbon M, Williams J . Structured Clinical Interview for DSM-IV Axis I Disorders, Research Version, Non-Patient Edition. New York State Psychiatric Institute, Biometrics Research Department: New York, 1996.

    Google Scholar 

  38. Brown SM, Manuck SB, Flory JD, Hariri AR . Neural basis of individual differences in impulsivity: contributions of corticolimbic circuits for behavioral arousal and control. Emotion 2006; 6: 239–245.

    Article  Google Scholar 

  39. Brown SM, Peet E, Manuck SB, Williamson DE, Dahl RE, Ferrell RE et al. A regulatory variant of the human tryptophan hydroxylase-2 gene biases amygdala reactivity. Mol Psychiatry 2005; 10: 884–888, 805.

    Article  CAS  Google Scholar 

  40. Manuck SB, Brown SM, Forbes EE, Hariri AR . Temporal stability of individual differences in amygdala reactivity. Am J Psychiatry 2007; 164: 1613–1614.

    Article  Google Scholar 

  41. Ekman P, Friesen W . Pictures of Facial Affect. Consulting Psychologists Press: Palo Alto, CA, 1976.

    Google Scholar 

  42. Viviani R . Unbiased ROI selection in neuroimaging studies of individual differences. NeuroImage 2010; 50: 184–189.

    Article  Google Scholar 

  43. Sipe JC, Chiang K, Gerber AL, Beutler E, Cravatt BF . A missense mutation in human fatty acid amide hydrolase associated with problem drug use. Proc Natl Acad Sci USA 2002; 99: 8394–8399.

    Article  CAS  Google Scholar 

  44. Chiang KP, Gerber AL, Sipe JC, Cravatt BF . Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: evidence for a link between defects in the endocannabinoid system and problem drug use. Hum Mol Genet 2004; 13: 2113–2119.

    Article  CAS  Google Scholar 

  45. Flanagan JM, Gerber AL, Cadet JL, Beutler E, Sipe JC . The fatty acid amide hydrolase 385 A/A (P129T) variant: haplotype analysis of an ancient missense mutation and validation of risk for drug addiction. Hum Genet 2006; 120: 581–588.

    Article  CAS  Google Scholar 

  46. Hariri AR, Gorka A, Hyde LW, Kimak M, Halder I, Ducci F et al. Divergent effects of genetic variation in endocannabinoid signaling on human threat- and reward-related brain function. Biol Psychiatry 2009; 66: 9–16.

    Article  CAS  Google Scholar 

  47. Patrick CJ, Curtin JJ, Tellegen A . Development and validation of a brief form of the multidimensional personality questionnaire. Psychol Assess 2002; 14: 150–163.

    Article  Google Scholar 

  48. Holmes A, Quirk GJ. Pharmacological facilitation of fear extinction and the search for adjunct treatments for anxiety disorders—the case of yohimbine. Trends Pharmacol Sci 2010; 31: 2–7.

    Article  CAS  Google Scholar 

  49. Kamprath K, Romo-Parra H, Haring M, Gaburro S, Doengi M, Lutz B et al. Short-term adaptation of conditioned fear responses through endocannabinoid signaling in the central amygdala. Neuropsychopharmacology 2011; 36: 652–663.

    Article  CAS  Google Scholar 

  50. Plendl W, Wotjak CT . Dissociation of within- and between-session extinction of conditioned fear. J Neurosci 2010; 30: 4990–4998.

    Article  CAS  Google Scholar 

  51. Pamplona FA, Bitencourt RM, Takahashi RN . Short- and long-term effects of cannabinoids on the extinction of contextual fear memory in rats. Neurobiol Learn Mem 2008; 90: 290–293.

    Article  CAS  Google Scholar 

  52. Riebe CJ, Pamplona F, Kamprath K, Wotjak CT . Fear relief-toward a new conceptual frame work and what endocannabinoids gotta do with it. Neuroscience 2012; 204: 159–185.

    Article  CAS  Google Scholar 

  53. Lin HC, Mao SC, Su CL, Gean PW . The role of prefrontal cortex CB1 receptors in the modulation of fear memory. Cereb Cortex 2009; 19: 165–175.

    Article  CAS  Google Scholar 

  54. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A . Amygdala inhibitory circuits and the control of fear memory. Neuron 2009; 62: 757–771.

    Article  CAS  Google Scholar 

  55. Chevaleyre V, Heifets BD, Kaeser PS, Sudhof TC, Castillo PE . Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. Neuron 2007; 54: 801–812.

    Article  CAS  Google Scholar 

  56. Azad SC, Monory K, Marsicano G, Cravatt BF, Lutz B, Zieglgansberger W et al. Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. J Neurosci 2004; 24: 9953–9961.

    Article  CAS  Google Scholar 

  57. Krueger RF, Caspi A, Moffitt TE . Epidemiological personology: the unifying role of personality in population-based research on problem behaviors. J Pers 2000; 68: 967–998.

    Article  CAS  Google Scholar 

  58. Miller MW . Personality and the etiology and expression of PTSD. Clin Psychol Sci Pract 2003; 10: 373–393.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIAAA Intramural Research Program (OGC, KPM, RC, GK, AH), Department of Defense in the Center for Neuroscience and Regenerative Medicine (OGC, AH), NIA (AG032282 to TEM), MRC (G0100527 to TEM), NIDA (DA031579 to ARH) and NIMH (MH077874 to AC; MH072837 to ARH, MH090412 to SP). AC is a Royal Society Wolfson Merit Award holder. We thank Daniel Fisher and Caitlin Schaapveld for assistance with behavioral experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Holmes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunduz-Cinar, O., MacPherson, K., Cinar, R. et al. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol Psychiatry 18, 813–823 (2013). https://doi.org/10.1038/mp.2012.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.72

Keywords

This article is cited by

Search

Quick links