Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling

Abstract

Stress and glucocorticoid stress hormones inhibit neurogenesis, whereas antidepressants increase neurogenesis and block stress-induced decrease in neurogenesis. Our previous studies have shown that leptin, an adipocyte-derived hormone with antidepressant-like properties, promotes baseline neurogenesis in the adult hippocampus. This study aimed to determine whether leptin is able to restore suppression of neurogenesis in a rat chronic unpredictable stress (CUS) model of depression. Chronic treatment with leptin reversed the CUS-induced reduction of hippocampal neurogenesis and depression-like behaviors. Leptin treatment elicited a delayed long-lasting antidepressant-like effect in the forced swim behavioral despair test, and this effect was blocked by ablation of neurogenesis with X-irradiation. The functional isoform of the leptin receptor, LepRb, and the glucocorticoid receptor (GR) were colocalized in hippocampal neural stem/progenitor cells in vivo and in vitro. Leptin treatment reversed the GR agonist dexamethasone (DEX)-induced reduction of proliferation of cultured neural stem/progenitor cells from adult hippocampus. Further mechanistic analysis revealed that leptin and DEX converged on glycogen synthase kinase-3β (GSK-3β) and β-catenin. While DEX decreased Ser9 phosphorylation and increased Tyr216 phosphorylation of GSK-3β, leptin increased Ser9 phosphorylation and attenuated the effects of DEX at both Ser9 and Tyr216 phosphorylation sites of GSK-3β. Moreover, leptin increased total level and nuclear translocation of β-catenin, a primary substrate of GSK-3β and a key regulator in controlling hippocampal neural progenitor cell proliferation, and reversed the inhibitory effects of DEX on β-catenin. Taken together, our results suggest that adult neurogenesis is involved in the delayed long-lasting antidepressant-like behavioral effects of leptin, and leptin treatment counteracts chronic stress and glucocorticoid-induced suppression of hippocampal neurogenesis via activating the GSK-3β/β-catenin signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Stanfield BB, Trice JE . Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res 1988; 72: 399–406.

    CAS  PubMed  Google Scholar 

  2. Song HJ, Stevens CF, Gage FH . Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci 2002; 5: 438–445.

    Article  CAS  PubMed  Google Scholar 

  3. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH . Functional neurogenesis in the adult hippocampus. Nature 2002; 415: 1030–1034.

    Article  CAS  PubMed  Google Scholar 

  4. Cameron HA, McEwen BS, Gould E . Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 1995; 15: 4687–4692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gould E . The effects of adrenal steroids and excitatory input on neuronal birth and survival. Ann N Y Acad Sci 1994; 743: 73–92.

    Article  CAS  PubMed  Google Scholar 

  6. Bursztajn S, Falls WA, Berman SA, Friedman MJ . Cell proliferation in the brains of NMDAR NR1 transgenic mice. Brain Res 2007; 1172: 10–20.

    Article  CAS  PubMed  Google Scholar 

  7. Banasr M, Hery M, Printemps R, Daszuta A . Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 2004; 29: 450–460.

    Article  CAS  PubMed  Google Scholar 

  8. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    CAS  PubMed  Google Scholar 

  9. Encinas JM, Vaahtokari A, Enikolopov G . Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA 2006; 103: 8233–8238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang P, Arnold SA, Habas A, Hetman M, Hagg T . Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice. J Neurosci 2008; 28: 2231–2241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Desouza LA, Ladiwala U, Daniel SM, Agashe S, Vaidya RA, Vaidya VA . Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cell Neurosci 2005; 29: 414–426.

    Article  CAS  PubMed  Google Scholar 

  12. Cameron HA, Gould E . Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 1994; 61: 203–209.

    Article  CAS  PubMed  Google Scholar 

  13. Cameron HA, Tanapat P, Gould E . Adrenal steroids and N-methyl-D-aspartate receptor activation regulate neurogenesis in the dentate gyrus of adult rats through a common pathway. Neuroscience 1998; 82: 349–354.

    Article  CAS  PubMed  Google Scholar 

  14. Banasr M, Hery M, Brezun JM, Daszuta A . Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus. Eur J Neurosci 2001; 14: 1417–1424.

    Article  CAS  PubMed  Google Scholar 

  15. Tanapat P, Hastings NB, Reeves AJ, Gould E . Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci 1999; 19: 5792–5801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duman RS, Malberg J, Nakagawa S . Regulation of adult neurogenesis by psychotropic drugs and stress. J Pharmacol Exp Ther 2001; 299: 401–407.

    CAS  PubMed  Google Scholar 

  17. Gould E, Tanapat P . Stress and hippocampal neurogenesis. Biol Psychiatry 1999; 46: 1472–1479.

    Article  CAS  PubMed  Google Scholar 

  18. Shingo T, Gregg C, Enwere E, Fujikawa H, Hassam R, Geary C et al. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 2003; 299: 117–120.

    Article  CAS  PubMed  Google Scholar 

  19. Shingo T, Sorokan ST, Shimazaki T, Weiss S . Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 2001; 21: 9733–9743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mak GK, Enwere EK, Gregg C, Pakarainen T, Poutanen M, Huhtaniemi I et al. Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat Neurosci 2007; 10: 1003–1011.

    Article  CAS  PubMed  Google Scholar 

  21. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S . Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 2005; 192: 348–356.

    Article  CAS  PubMed  Google Scholar 

  22. Zigova T, Pencea V, Wiegand SJ, Luskin MB . Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci 1998; 11: 234–245.

    Article  CAS  PubMed  Google Scholar 

  23. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA . Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 2002; 99: 11946–11950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brezun JM, Daszuta A . Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 1999; 89: 999–1002.

    Article  CAS  PubMed  Google Scholar 

  25. Duman RS, Nakagawa S, Malberg J . Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 2001; 25: 836–844.

    Article  CAS  PubMed  Google Scholar 

  26. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakagawa S, Kim JE, Lee R, Malberg JE, Chen J, Steffen C et al. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 2002; 22: 3673–3682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kempermann G, Kuhn HG, Gage FH . More hippocampal neurons in adult mice living in an enriched environment. Nature 1997; 386: 493–495.

    Article  CAS  PubMed  Google Scholar 

  29. Ge S, Pradhan DA, Ming GL, Song H . GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci 2007; 30: 1–8.

    Article  PubMed  CAS  Google Scholar 

  30. Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M et al. Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 2003; 467: 455–463.

    Article  PubMed  Google Scholar 

  31. Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E . Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 1998; 95: 3168–3171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McEwen BS . Stress and hippocampal plasticity. Annu Rev Neurosci 1999; 22: 105–122.

    Article  CAS  PubMed  Google Scholar 

  33. Sahay A, Hen R . Adult hippocampal neurogenesis in depression. Nat Neurosci 2007; 10: 1110–1115.

    Article  CAS  PubMed  Google Scholar 

  34. Campbell S, MacQueen G . An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry 2006; 19: 25–33.

    Article  PubMed  Google Scholar 

  35. Dranovsky A, Hen R . Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 2006; 59: 1136–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jayatissa MN, Bisgaard C, Tingstrom A, Papp M, Wiborg O . Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 2006; 31: 2395–2404.

    Article  CAS  PubMed  Google Scholar 

  37. Alonso R, Griebel G, Pavone G, Stemmelin J, Le Fur G, Soubrie P . Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry 2004; 9: 278–286, 224.

    CAS  PubMed  Google Scholar 

  38. Mineur YS, Belzung C, Crusio WE . Functional implications of decreases in neurogenesis following chronic mild stress in mice. Neuroscience 2007; 150: 251–259.

    Article  CAS  PubMed  Google Scholar 

  39. Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C et al. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 2011; 16: 1177–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Toth E, Gersner R, Wilf-Yarkoni A, Raizel H, Dar DE, Richter-Levin G et al. Age-dependent effects of chronic stress on brain plasticity and depressive behavior. J Neurochem 2008; 107: 522–532.

    Article  CAS  PubMed  Google Scholar 

  41. Xu Y, Ku B, Cui L, Li X, Barish PA, Foster TC et al. Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res 2007; 1162: 9–18.

    Article  CAS  PubMed  Google Scholar 

  42. Czeh B, Simon M, Schmelting B, Hiemke C, Fuchs E . Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 2006; 31: 1616–1626.

    Article  CAS  PubMed  Google Scholar 

  43. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E . Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 1997; 17: 2492–2498.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Van Bokhoven P, Oomen CA, Hoogendijk WJ, Smit AB, Lucassen PJ, Spijker S . Reduction in hippocampal neurogenesis after social defeat is long-lasting and responsive to late antidepressant treatment. Eur J Neurosci 2011; 33: 1833–1840.

    Article  CAS  PubMed  Google Scholar 

  45. Lagace DC, Donovan MH, DeCarolis NA, Farnbauch LA, Malhotra S, Berton O et al. Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proc Natl Acad Sci USA 2010; 107: 4436–4441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yap JJ, Takase LF, Kochman LJ, Fornal CA, Miczek KA, Jacobs BL . Repeated brief social defeat episodes in mice: effects on cell proliferation in the dentate gyrus. Behav Brain Res 2006; 172: 344–350.

    Article  PubMed  Google Scholar 

  47. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 2009; 62: 479–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pham K, Nacher J, Hof PR, McEwen BS . Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 2003; 17: 879–886.

    Article  PubMed  Google Scholar 

  49. Rosenbrock H, Koros E, Bloching A, Podhorna J, Borsini F . Effect of chronic intermittent restraint stress on hippocampal expression of marker proteins for synaptic plasticity and progenitor cell proliferation in rats. Brain Res 2005; 1040: 55–63.

    Article  CAS  PubMed  Google Scholar 

  50. Tanapat P, Hastings NB, Rydel TA, Galea LA, Gould E . Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J Comp Neurol 2001; 437: 496–504.

    Article  CAS  PubMed  Google Scholar 

  51. Falconer EM, Galea LA . Sex differences in cell proliferation, cell death and defensive behavior following acute predator odor stress in adult rats. Brain Res 2003; 975: 22–36.

    Article  CAS  PubMed  Google Scholar 

  52. Mirescu C, Peters JD, Gould E . Early life experience alters response of adult neurogenesis to stress. Nat Neurosci 2004; 7: 841–846.

    Article  CAS  PubMed  Google Scholar 

  53. Hill MN, Kambo JS, Sun JC, Gorzalka BB, Galea LA . Endocannabinoids modulate stress-induced suppression of hippocampal cell proliferation and activation of defensive behaviours. Eur J Neurosci 2006; 24: 1845–1849.

    Article  PubMed  Google Scholar 

  54. Malberg JE, Duman RS . Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 2003; 28: 1562–1571.

    Article  CAS  PubMed  Google Scholar 

  55. Shors TJ, Mathew J, Sisti HM, Edgecomb C, Beckoff S, Dalla C . Neurogenesis and helplessness are mediated by controllability in males but not in females. Biol Psychiatry 2007; 62: 487–495.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vollmayr B, Simonis C, Weber S, Gass P, Henn F . Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness. Biol Psychiatry 2003; 54: 1035–1040.

    Article  PubMed  Google Scholar 

  57. Fornal CA, Stevens J, Barson JR, Blakley GG, Patterson-Buckendahl P, Jacobs BL . Delayed suppression of hippocampal cell proliferation in rats following inescapable shocks. Brain Res 2007; 1130: 48–53.

    Article  CAS  PubMed  Google Scholar 

  58. Brummelte S, Galea LA . Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience 2010; 168: 680–690.

    Article  CAS  PubMed  Google Scholar 

  59. Gould E, Cameron HA, Daniels DC, Woolley CS, McEwen BS . Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 1992; 12: 3642–3650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murray F, Smith DW, Hutson PH . Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur J Pharmacol 2008; 583: 115–127.

    Article  CAS  PubMed  Google Scholar 

  61. Qiu G, Helmeste DM, Samaranayake AN, Lau WM, Lee TM, Tang SW et al. Modulation of the suppressive effect of corticosterone on adult rat hippocampal cell proliferation by paroxetine. Neurosci Bull 2007; 23: 131–136.

    Article  PubMed  Google Scholar 

  62. Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G et al. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 2008; 64: 293–301.

    Article  CAS  PubMed  Google Scholar 

  63. Wong EY, Herbert J . The corticoid environment: a determining factor for neural progenitors’ survival in the adult hippocampus. Eur J Neurosci 2004; 20: 2491–2498.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Karishma KK, Herbert J . Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. Eur J Neurosci 2002; 16: 445–453.

    Article  CAS  PubMed  Google Scholar 

  65. Jacobs BL . Adult brain neurogenesis and depression. Brain Behav Immun 2002; 16: 602–609.

    Article  CAS  PubMed  Google Scholar 

  66. Warner-Schmidt JL, Duman RS . Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 2006; 16: 239–249.

    Article  CAS  PubMed  Google Scholar 

  67. Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 2001; 98: 12796–12801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu XY, Kim CS, Frazer A, Zhang W . Leptin: a potential novel antidepressant. Proc Natl Acad Sci USA 2006; 103: 1593–1598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Garza JC, Guo M, Zhang W, Lu XY . Leptin increases adult hippocampal neurogenesis in vivo and in vitro. J Biol Chem 2008; 283: 18238–18247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM . Leptin enters the brain by a saturable system independent of insulin. Peptides 1996; 17: 305–311.

    Article  CAS  PubMed  Google Scholar 

  71. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996; 379: 632–635.

    Article  CAS  PubMed  Google Scholar 

  72. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995; 83: 1263–1271.

    Article  CAS  PubMed  Google Scholar 

  73. Cameron HA, Woolley CS, Gould E . Adrenal steroid receptor immunoreactivity in cells born in the adult rat dentate gyrus. Brain Res 1993; 611: 342–346.

    Article  CAS  PubMed  Google Scholar 

  74. Garcia A, Steiner B, Kronenberg G, Bick-Sander A, Kempermann G . Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell 2004; 3: 363–371.

    Article  CAS  PubMed  Google Scholar 

  75. Kim CS, Huang T, Garza JC, Ramos F, Frazer A, Liu F et al. Leptin induces antidepressant-like behavioral effects and activates specific signal transduction pathways in the hippocampus and amygdala of mice. Neuropsychopharmacology 2006; 31): S237–S238.

    Google Scholar 

  76. Orsetti M, Canonico PL, Dellarole A, Colella L, Di Brisco F, Ghi P . Quetiapine prevents anhedonia induced by acute or chronic stress. Neuropsychopharmacology 2007; 32: 1783–1790.

    Article  CAS  PubMed  Google Scholar 

  77. Muscat R, Papp M, Willner P . Reversal of stress-induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology (Berl) 1992; 109: 433–438.

    Article  CAS  Google Scholar 

  78. Liu J, Garza JC, Truong HV, Henschel J, Zhang W, Lu XY . The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology 2007; 148: 5531–5540.

    Article  CAS  PubMed  Google Scholar 

  79. Koo JW, Duman RS . IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 2008; 105: 751–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lucki I . The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 1997; 8: 523–532.

    Article  CAS  PubMed  Google Scholar 

  81. Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K . High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 2007; 317: 819–823.

    Article  CAS  PubMed  Google Scholar 

  82. Noonan MA, Bulin SE, Fuller DC, Eisch AJ . Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. J Neurosci 2010; 30: 304–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM . A role for adult neurogenesis in spatial long-term memory. Neuroscience 2005; 130: 843–852.

    Article  CAS  PubMed  Google Scholar 

  84. Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR . Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res 2003; 63: 4021–4027.

    CAS  PubMed  Google Scholar 

  85. Monje ML, Mizumatsu S, Fike JR, Palmer TD . Irradiation induces neural precursor-cell dysfunction. Nat Med 2002; 8: 955–962.

    Article  CAS  PubMed  Google Scholar 

  86. Nowakowski RS, Lewin SB, Miller MW . Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 1989; 18: 311–318.

    Article  CAS  PubMed  Google Scholar 

  87. Garza JC, Kim CS, Liu J, Zhang W, Lu XY . Adeno-associated virus-mediated knockdown of melanocortin-4 receptor in the paraventricular nucleus of the hypothalamus promotes high-fat diet-induced hyperphagia and obesity. J Endocrinol 2008; 197: 471–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Esposito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC, Pitossi FJ et al. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci 2005; 25: 10074–10086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mirescu C, Gould E . Stress and adult neurogenesis. Hippocampus 2006; 16: 233–238.

    Article  CAS  PubMed  Google Scholar 

  90. Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF, Friedman JM et al. Leptin targets in the mouse brain. J Comp Neurol 2009; 514: 518–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Van Eekelen JA, Jiang W, De Kloet ER, Bohn MC . Distribution of the mineralocorticoid and the glucocorticoid receptor mRNAs in the rat hippocampus. J Neurosci Res 1988; 21: 88–94.

    Article  CAS  PubMed  Google Scholar 

  92. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  PubMed  Google Scholar 

  93. Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR . Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J 1993; 12: 803–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang QM, Fiol CJ, DePaoli-Roach AA, Roach PJ . Glycogen synthase kinase-3 beta is a dual specificity kinase differentially regulated by tyrosine and serine/threonine phosphorylation. J Biol Chem 1994; 269: 14566–14574.

    CAS  PubMed  Google Scholar 

  95. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R . Beta-catenin is a target for the ubiquitin–proteasome pathway. EMBO J 1997; 16: 3797–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H et al. Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol 2008; 28: 7427–7441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bouret SG, Draper SJ, Simerly RB . Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004; 304: 108–110.

    Article  CAS  PubMed  Google Scholar 

  98. Guo Z, Jiang H, Xu X, Duan W, Mattson MP . Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization. J Biol Chem 2008; 283: 1754–1763.

    Article  CAS  PubMed  Google Scholar 

  99. Weng Z, Signore AP, Gao Y, Wang S, Zhang F, Hastings T et al. Leptin protects against 6-hydroxydopamine-induced dopaminergic cell death via mitogen-activated protein kinase signaling. J Biol Chem 2007; 282: 34479–34491.

    Article  CAS  PubMed  Google Scholar 

  100. Zhang F, Wang S, Signore AP, Chen J . Neuroprotective effects of leptin against ischemic injury induced by oxygen–glucose deprivation and transient cerebral ischemia. Stroke 2007; 38: 2329–2336.

    Article  CAS  PubMed  Google Scholar 

  101. O’Malley D, MacDonald N, Mizielinska S, Connolly CN, Irving AJ, Harvey J . Leptin promotes rapid dynamic changes in hippocampal dendritic morphology. Mol Cell Neurosci 2007; 35: 559–572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Matochik JA, London ED, Yildiz BO, Ozata M, Caglayan S, DePaoli AM et al. Effect of leptin replacement on brain structure in genetically leptin-deficient adults. J Clin Endocrinol Metab 2005; 90: 2851–2854.

    Article  CAS  PubMed  Google Scholar 

  103. Liu J, Garza JC, Bronner J, Kim CS, Zhang W, Lu XY . Acute administration of leptin produces anxiolytic-like effects: a comparison with fluoxetine. Psychopharmacology (Berl) 2010; 207: 535–545.

    Article  CAS  Google Scholar 

  104. Jayatissa MN, Henningsen K, Nikolajsen G, West MJ, Wiborg O . A reduced number of hippocampal granule cells does not associate with an anhedonia-like phenotype in a rat chronic mild stress model of depression. Stress 2010; 13: 95–105.

    Article  PubMed  Google Scholar 

  105. Willner P . Chronic mild stress (CMS) revisited: consistency and behavioural–neurobiological concordance in the effects of CMS. Neuropsychobiology 2005; 52: 90–110.

    Article  CAS  PubMed  Google Scholar 

  106. D’Aquila PS, Brain P, Willner P . Effects of chronic mild stress on performance in behavioural tests relevant to anxiety and depression. Physiol Behav 1994; 56: 861–867.

    Article  PubMed  Google Scholar 

  107. Kirshenbaum GS, Saltzman K, Rose B, Petersen J, Vilsen B, Roder JC . Decreased neuronal Na(+),K(+)-ATPase activity in Atp1a3 heterozygous mice increases susceptibility to depression-like endophenotypes by chronic variable stress. Genes Brain Behav 2011; 10: 542–550.

    Article  CAS  PubMed  Google Scholar 

  108. Banasr M, Valentine GW, Li XY, Gourley SL, Taylor JR, Duman RS . Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry 2007; 62: 496–504.

    Article  CAS  PubMed  Google Scholar 

  109. Bielajew C, Konkle AT, Kentner AC, Baker SL, Stewart A, Hutchins AA et al. Strain and gender specific effects in the forced swim test: effects of previous stress exposure. Stress 2003; 6: 269–280.

    Article  CAS  PubMed  Google Scholar 

  110. Parent JM, Tada E, Fike JR, Lowenstein DH . Inhibition of dentate granule cell neurogenesis with brain irradiation does not prevent seizure-induced mossy fiber synaptic reorganization in the rat. J Neurosci 1999; 19: 4508–4519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Peissner W, Kocher M, Treuer H, Gillardon F . Ionizing radiation-induced apoptosis of proliferating stem cells in the dentate gyrus of the adult rat hippocampus. Brain Res Mol Brain Res 1999; 71: 61–68.

    Article  CAS  PubMed  Google Scholar 

  112. Blaiss CA, Yu TS, Zhang G, Chen J, Dimchev G, Parada LF et al. Temporally specified genetic ablation of neurogenesis impairs cognitive recovery after traumatic brain injury. J Neurosci 2011; 31: 4906–4916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jin K, Wang X, Xie L, Mao XO, Greenberg DA . Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc Natl Acad Sci USA 2010; 107: 7993–7998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Revest JM, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza PV et al. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry 2009; 14: 959–967.

    Article  PubMed  Google Scholar 

  115. Schloesser RJ, Lehmann M, Martinowich K, Manji HK, Herkenham M . Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry 2010; 15: 1152–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE et al. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 2006; 103: 17501–17506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA, Mucke L et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 1998; 93: 189–201.

    Article  CAS  PubMed  Google Scholar 

  118. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 2008; 11: 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  119. Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 2009; 14: 764–773, 739.

    Article  CAS  PubMed  Google Scholar 

  120. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E . Neurogenesis in the adult is involved in the formation of trace memories. Nature 2001; 410: 372–376.

    Article  CAS  PubMed  Google Scholar 

  121. Perera TD, Dwork AJ, Keegan KA, Thirumangalakudi L, Lipira CM, Joyce N et al. Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS One 2011; 6: e17600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kempermann G, Jessberger S, Steiner B, Kronenberg G . Milestones of neuronal development in the adult hippocampus. Trends Neurosci 2004; 27: 447–452.

    Article  CAS  PubMed  Google Scholar 

  123. Wong EY, Herbert J . Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus. Neuroscience 2006; 137: 83–92.

    Article  CAS  PubMed  Google Scholar 

  124. Boku S, Nakagawa S, Masuda T, Nishikawa H, Kato A, Kitaichi Y et al. Glucocorticoids and lithium reciprocally regulate the proliferation of adult dentate gyrus-derived neural precursor cells through GSK-3beta and beta-catenin/TCF pathway. Neuropsychopharmacology 2009; 34: 805–815.

    Article  CAS  PubMed  Google Scholar 

  125. Kim JB, Ju JY, Kim JH, Kim TY, Yang BH, Lee YS et al. Dexamethasone inhibits proliferation of adult hippocampal neurogenesis in vivo and in vitro. Brain Res 2004; 1027: 1–10.

    Article  CAS  PubMed  Google Scholar 

  126. Hastings NB, Gould E . Neurons inhibit neurogenesis. Nat Med 2003; 9: 264–266.

    Article  CAS  PubMed  Google Scholar 

  127. Hirabayashi Y, Gotoh Y . Stage-dependent fate determination of neural precursor cells in mouse forebrain. Neurosci Res 2005; 51: 331–336.

    Article  CAS  PubMed  Google Scholar 

  128. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005; 437: 1370–1375.

    Article  CAS  PubMed  Google Scholar 

  129. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK et al. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 2009; 136: 1017–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Qu Q, Sun G, Li W, Yang S, Ye P, Zhao C et al. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat Cell Biol 2010; 12: 31–40; S31–39.

    Article  CAS  PubMed  Google Scholar 

  131. Reya T, Clevers H . Wnt signalling in stem cells and cancer. Nature 2005; 434: 843–850.

    Article  CAS  PubMed  Google Scholar 

  132. Zechner D, Fujita Y, Hulsken J, Muller T, Walther I, Taketo MM et al. Beta-catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol 2003; 258: 406–418.

    Article  CAS  PubMed  Google Scholar 

  133. Bates SH, Myers Jr MG . The role of leptin receptor signaling in feeding and neuroendocrine function. Trends Endocrinol Metab 2003; 14: 447–452.

    Article  CAS  PubMed  Google Scholar 

  134. Munzberg H, Huo L, Nillni EA, Hollenberg AN, Bjorbaek C . Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 2003; 144: 2121–2131.

    Article  CAS  PubMed  Google Scholar 

  135. Vaisse C, Halaas JL, Horvath CM, Darnell Jr JE, Stoffel M, Friedman JM . Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 1996; 14: 95–97.

    Article  CAS  PubMed  Google Scholar 

  136. Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC . Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci USA 1996; 93: 6231–6235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers Jr MG, Schwartz MW . Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 2001; 413: 794–795.

    Article  CAS  PubMed  Google Scholar 

  138. Cross DA, Watt PW, Shaw M, van der Kaay J, Downes CP, Holder JC et al. Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Lett 1997; 406: 211–215.

    Article  CAS  PubMed  Google Scholar 

  139. Moh A, Zhang W, Yu S, Wang J, Xu X, Li J et al. STAT3 sensitizes insulin signaling by negatively regulating glycogen synthase kinase-3 beta. Diabetes 2008; 57: 1227–1235.

    Article  CAS  PubMed  Google Scholar 

  140. Wada A . Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3beta, beta-catenin, and neurotrophin cascades. J Pharmacol Sci 2009; 110: 14–28.

    Article  CAS  PubMed  Google Scholar 

  141. Yuan Y, Sun J, Zhao M, Hu J, Wang X, Du G et al. Overexpression of alpha-synuclein down-regulates BDNF expression. Cell Mol Neurobiol 2010; 30: 939–946.

    Article  CAS  PubMed  Google Scholar 

  142. Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F et al. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 2006; 24: 1850–1856.

    Article  PubMed  Google Scholar 

  143. Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG et al. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 2008; 59: 399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Schmidt HD, Duman RS . Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology 2010; 35: 2378–2391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sairanen M, Lucas G, Ernfors P, Castren M, Castren E . Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 2005; 25: 1089–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee J, Duan W, Mattson MP . Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 2002; 82: 1367–1375.

    Article  CAS  PubMed  Google Scholar 

  147. Govindarajan A, Rao BS, Nair D, Trinh M, Mawjee N, Tonegawa S et al. Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects. Proc Natl Acad Sci USA 2006; 103: 13208–13213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS . Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM . Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 2008; 63: 642–649.

    Article  CAS  PubMed  Google Scholar 

  150. Taliaz D, Stall N, Dar DE, Zangen A . Knockdown of brain-derived neurotrophic factor in specific brain sites precipitates behaviors associated with depression and reduces neurogenesis. Mol Psychiatry 2010; 15: 80–92.

    Article  CAS  PubMed  Google Scholar 

  151. Yamada N, Katsuura G, Ochi Y, Ebihara K, Kusakabe T, Hosoda K et al. Impaired CNS leptin action is implicated in depression associated with obesity. Endocrinology 2011; 152: 2634–2643.

    Article  CAS  PubMed  Google Scholar 

  152. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  CAS  PubMed  Google Scholar 

  153. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903–908.

    Article  CAS  PubMed  Google Scholar 

  154. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995; 269: 540–543.

    Article  CAS  PubMed  Google Scholar 

  155. Coleman DL . Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 1978; 14: 141–148.

    Article  CAS  PubMed  Google Scholar 

  156. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD . A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998; 18: 213–215.

    Article  CAS  PubMed  Google Scholar 

  157. Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O’Kirwan F et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci USA 2004; 101: 4531–4536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS . Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 2000; 105: 1827–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P et al. High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol 2006; 13: 1385–1388.

    Article  CAS  PubMed  Google Scholar 

  160. Park HR, Park M, Choi J, Park KY, Chung HY, Lee J . A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett 2010; 482: 235–239.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Alan Frazer for his helpful discussion on this manuscript. This work was supported by Ruth L Kirschstein NRSA Predoctoral fellowship MH083442 (JCG), and NIH Grants MH073844 and MH076929 (XYL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-Y Lu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garza, J., Guo, M., Zhang, W. et al. Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling. Mol Psychiatry 17, 790–808 (2012). https://doi.org/10.1038/mp.2011.161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.161

Keywords

This article is cited by

Search

Quick links