Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer's disease

Abstract

The only recognized genetic determinant of the common forms of Alzheimer's disease (AD) is the ɛ4 allele of the apolipoprotein E gene (APOE). To identify new candidate genes, we recently performed transcriptomic analysis of 2741 genes in chromosomal regions of interest using brain tissue of AD cases and controls. From 82 differentially expressed genes, 1156 polymorphisms were genotyped in two independent discovery subsamples (n=945). Seventeen genes exhibited at least one polymorphism associated with AD risk, and following correction for multiple testing, we retained the interleukin (IL)-33 gene. We first confirmed that the IL-33 expression was decreased in the brain of AD cases compared with that of controls. Further genetic analysis led us to select three polymorphisms within this gene, which we analyzed in three independent case–control studies. These polymorphisms and a resulting protective haplotype were systematically associated with AD risk in non-APOE ɛ4 carriers. Using a large prospective study, these associations were also detected when analyzing the prevalent and incident AD cases together or the incident AD cases alone. These polymorphisms were also associated with less cerebral amyloid angiopathy (CAA) in the brain of non-APOE ɛ4 AD cases. Immunohistochemistry experiments finally indicated that the IL-33 expression was consistently restricted to vascular capillaries in the brain. Moreover, IL-33 overexpression in cellular models led to a specific decrease in secretion of the Aβ40 peptides, the main CAA component. In conclusion, our data suggest that genetic variants in IL-33 gene may be associated with a decrease in AD risk potentially in modulating CAA formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cruts M, Van Broeckhoven C . Molecular genetics of Alzheimer's disease. Ann Med 1998; 30: 560–565.

    Article  CAS  Google Scholar 

  2. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 1999; 65: 664–670.

    Article  CAS  Google Scholar 

  3. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997; 278: 1349–1356.

    Article  CAS  Google Scholar 

  4. Lambert JC, Amouyel P . Genetic heterogeneity of Alzheimer's disease: complexity and advances. Psychoneuroendocrinology 2007; 32: S62–S70.

    Article  CAS  Google Scholar 

  5. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE . Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 2007; 39: 17–23.

    Article  CAS  Google Scholar 

  6. Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A et al. Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants. Hum Mol Genet 2007; 16: 865–873.

    Article  CAS  Google Scholar 

  7. Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL et al. GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. Neuron 2007; 54: 713–720.

    Article  CAS  Google Scholar 

  8. Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L et al. Candidate Single-Nucleotide Polymorphisms From a Genomewide Association Study of Alzheimer Disease. Arch Neurol 2008; 65: 45–53.

    Article  Google Scholar 

  9. Li YJ, Oliveira SA, Xu P, Martin ER, Stenger JE, Scherzer CR et al. Glutathione S-transferase omega-1 modifies age-at-onset of Alzheimer disease and Parkinson disease. Hum Mol Genet 2003; 12: 3259–3267.

    Article  CAS  Google Scholar 

  10. Lambert JC, Testa E, Cognat V, Soula J, Hot D, Lemoine Y et al. Relevance and limitations of public databases for microarray design: a critical approach to gene predictions. Pharmacogenomics J 2003; 3: 235–241.

    Article  CAS  Google Scholar 

  11. Bensemain F, Hot D, Ferreira S, Dumont J, Bombois S, Maurage CA et al. Evidence for induction of the ornithine transcarbamylase expression in Alzheimer's disease. Mol Psychiatry 2009; 14: 106–116.

    Article  CAS  Google Scholar 

  12. Chapuis J, Tian J, Shi J, Bensemain F, Cottel D, Lendon C et al. Association study of the vascular endothelial growth factor gene with the risk of developing Alzheimer's disease. Neurobiol Aging 2006; 27: 1212–1215.

    Article  CAS  Google Scholar 

  13. Chapuis J, Hannequin D, Pasquier F, Bentham P, Brice A, Leber I et al. Association study of the GAB2 gene with Alzheimer's disease. Neurobiol Dis 2008; 30: 103–106.

    Article  CAS  Google Scholar 

  14. Kamboh MI, Minster RL, Feingold E, DeKosky ST . Genetic association of ubiquilin with Alzheimer's disease and related quantitative measures. Mol Psychiatry 2006; 11: 273–279.

    Article  CAS  Google Scholar 

  15. 3C Study Group. Vascular factors and risk of dementia: design of the Three-City Study and baseline characteristics of the study population. Neuroepidemiology 2003; 22: 316–325.

    Article  Google Scholar 

  16. Tian J, Shi J, Smallman R, Iwatsubo T, Mann DM . Relationships in Alzheimer's disease between the extent of Abeta deposition in cerebral blood vessel walls, as cerebral amyloid angiopathy, and the amount of cerebrovascular smooth muscle cells and collagen. Neuropathol Appl Neurobiol 2006; 32: 332–340.

    Article  CAS  Google Scholar 

  17. Berr C, Lambert JC, Sazdovitch V, Amouyel P, Chartier-Harlin MC, Mohr M et al. Neuropathological epidemiology of cerebral aging: a study of two genetic polymorphisms. Neurobiol Aging 2001; 22: 227–235.

    Article  CAS  Google Scholar 

  18. Moulin D, Donzé O, Talabot-Ayer D, Mézin F, Palmer G, Gabay C . Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine 2007; 40: 216–225.

    Article  CAS  Google Scholar 

  19. Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD et al. Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 2004; 7: 954–960.

    Article  CAS  Google Scholar 

  20. Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 2006; 24: 1115–1122.

    Article  CAS  Google Scholar 

  21. Vingtdeux V, Hamdane M, Bégard S, Loyens A, Delacourte A, Beauvillain JC et al. Intracellular pH regulates amyloid precursor protein intracellular domain accumulation. Neurobiol Dis 2007; 25: 686–696.

    Article  CAS  Google Scholar 

  22. Tregouet DA, Tiret L . Cox proportional Hazards survival regression in haplotype-based association analysis using the stochastic-EM algorithm. Eur J Hum Genet 2004; 12: 971–974.

    Article  CAS  Google Scholar 

  23. Barberger-Gateau P, Raffaitin C, Letenneur L, Berr C, Tzourio C, Dartigues JF et al. Dietary patterns and risk of dementia: the Three-City cohort study. Neurology 2007; 6920: 1921–1930.

    Article  Google Scholar 

  24. Joachim CL, Duffy LK, Morris JH, Selkoe DJ . Protein chemical and immunocytochemical studies of meningovascular beta-amyloid protein in Alzheimer's disease and normal aging. Brain Res 1988; 474: 100–111.

    Article  CAS  Google Scholar 

  25. Fryer JD, Taylor JW, DeMattos RB, Bales KR, Paul SM, Parsadanian M et al. Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein transgenic mice. J Neurosci 2003; 23: 7889–7896.

    Article  CAS  Google Scholar 

  26. Hoe HS, Tran TS, Matsuoka Y, Howell BW, Rebeck GW . DAB1 and Reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J Biol Chem 2006; 281: 35176–35185.

    Article  CAS  Google Scholar 

  27. Frackowiak J, Potempska A, LeVine H, Haske T, Dickson D, Mazur-Kolecka B . Extracellular deposits of A beta produced in cultures of Alzheimer disease brain vascular smooth muscle cells. J Neuropathol Exp Neurol 2005; 64: 82–90.

    Article  CAS  Google Scholar 

  28. Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA 2007; 104: 282–287.

    Article  CAS  Google Scholar 

  29. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005; 23: 479–490.

    Article  CAS  Google Scholar 

  30. Baekkevold ES, Roussigné M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol 2003; 163: 69–79.

    Article  CAS  Google Scholar 

  31. Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA 1993; 90: 9649–9653.

    Article  CAS  Google Scholar 

  32. Vidal R, Calero M, Piccardo P, Farlow MR, Unverzagt FW, Méndez E et al. Senile dementia associated with amyloid beta protein angiopathy and tau perivascular pathology but not neuritic plaques in patients homozygous for the APOE-epsilon4 allele. Acta Neuropathol 2000; 100: 1–12.

    Article  CAS  Google Scholar 

  33. Chalmers K, Wilcock GK, Love S . APOE epsilon 4 influences the pathological phenotype of Alzheimer's disease by favouring cerebrovascular over parenchymal accumulation of A beta protein. Neuropathol Appl Neurobiol 2003; 29: 231–238.21.

    Article  CAS  Google Scholar 

  34. Fryer JD, Simmons K, Parsadanian M, Bales KR, Paul SM, Sullivan PM et al. Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J Neurosci 2005; 25: 2803–2810.

    Article  CAS  Google Scholar 

  35. Nicoll JA, Yamada M, Frackowiak J, Mazur-Kolecka B, Weller RO . Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer's disease. Pro-CAA position statement. Neurobiol Aging 2004; 25: 589–597.

    Article  CAS  Google Scholar 

  36. Esiri MM, Wilcock GK, Morris JH . Neuropathological assessment of the lesions of significance in vascular dementia. J Neurol Neurosurg Psychiatry 1997; 63: 749–753.

    Article  CAS  Google Scholar 

  37. Kalaria RN, Kenny RA, Ballard CG, Perry R, Ince P, Polvikoski T . Towards defining the neuropathological substrates of vascular dementia. J Neurol Sci 2004; 226: 75–80.

    Article  Google Scholar 

  38. Jellinger KA, Attems J . Prevalence and pathogenic role of cerebrovascular lesions in Alzheimer disease. J Neurol Sci 2005; 37: 229–230.

    Google Scholar 

  39. Ellis RJ, Olichney JM, Thal LJ, Mirra SS, Morris JC, Beekly D et al. Cerebral amyloid angiopathy in the brains of patients with Alzheimer's disease: the CERAD experience, Part XV. Neurology 1996; 46: 1592–1596.

    Article  CAS  Google Scholar 

  40. Komai-Koma M, Xu D, Li Y, McKenzie AN, McInnes IB, Liew FY . IL-33 is a chemoattractant for human Th2 cells. Eur J Immunol 2007; 37: 2779–2786.

    Article  CAS  Google Scholar 

  41. Ali S, Huber M, Kollewe C, Bischoff SC, Falk W, Martin MU . IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc Natl Acad Sci USA 2007; 104: 18660–18665.

    Article  CAS  Google Scholar 

  42. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006; 9: 268–275.

    Article  CAS  Google Scholar 

  43. Buckwalter MS, Coleman BS, Buttini M, Barbour R, Schenk D, Games D et al. Increased T cell recruitment to the CNS after amyloid beta 1-42 immunization in Alzheimer's mice overproducing transforming growth factor-beta 1. J Neurosci 2006; 26: 11437–11441.

    Article  CAS  Google Scholar 

  44. Britschgi M, Wyss-Coray T . Immune cells may fend off Alzheimer disease. Nat Med 2007; 13: 408–409.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jo Ann Cahn for her helpful contribution in writing of the manuscript and Dr Morisada Hayakawa for providing us the monoclonal ST2 antibody and Ryan Minster for technical support. Julien Chapuis was supported by the Ministère de l’enseignement supérieur et de la Recherche (MESR). Franck Hansmannel was supported by the Alzheimer's association (Grant IIRG-06-25487). Faiza Bensemain was supported by the France Alzheimer Association. Geoffroy Laumet was supported by the Pasteur Institute of Lille and the region Nord-Pas de Calais. This study was funded by Genoscreen, INSERM (ATC-vieillissement), the Pasteur Institute of Lille, the genopole of Lille, the CPER-neuroscience and the US National Institute on Aging Grants AG13672 and AG05133 (I.K. and S.T.D.). The Three-City Study was performed as part of a collaboration between the Institut National de la Santé et de la Recherche Médicale (INSERM), the Victor Segalen–Bordeaux II University and Sanofi-Synthélabo. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C-Study was also funded by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, MGEN, Institut de la Longévité, Agence Française de Sécurité Sanitaire des Produits de Santé, the Aquitaine and Bourgogne Regional Councils, Fondation de France and the jont French Ministry of Research/INSERM ‘Cohortes et collections de données biologiques’ programme. Lille Génopôle received an unconditional grant from Eisai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Lambert.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapuis, J., Hot, D., Hansmannel, F. et al. Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer's disease. Mol Psychiatry 14, 1004–1016 (2009). https://doi.org/10.1038/mp.2009.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.10

Keywords

This article is cited by

Search

Quick links