Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Evaluation of the neutrophil-lymphocyte ratio as a measure of distress in rats

Abstract

The ability to evaluate distress in laboratory animals is needed in order to ensure that husbandry and experimental procedures do not negatively impact animal welfare. Accurate measurement of acute stress and chronic stress, and distinguishing between stress that is harmful (distress) and stress that does no harm (eustress), can be challenging. Whereas corticosterone concentrations are commonly used to measure stress in laboratory animals, the neutrophil-lymphocyte ratio has been proposed as a potentially better indicator of chronic stress. Furthermore, an association between such measures of stress and concurrent behavioral indicators of negative welfare is required to determine their accuracy in evaluating distress. The authors compared serum corticosterone concentrations and neutrophil-lymphocyte ratios to assess acute or chronic stress in male Sprague Dawley rats. Elevated serum corticosterone concentrations, but not neutrophil-lymphocyte ratios, were associated with acute stress exposure, whereas elevated neutrophil-lymphocyte ratios, but not serum corticosterone concentrations, were associated with chronic stress exposure. Because the neutrophil-lymphocyte ratio differences corresponded with a behavioral indicator of distress in chronically stressed rats, it may serve as a valuable tool for the physiological assessment of distress in rats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Poole, T. Happy animals make good science. Lab. Anim. 31, 116–124 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Lawler, M.M. in Comfortable Quarters for Laboratory Animals (eds. Reinhardt, V. & Reinhardt, A.) 26–32 (Animal Welfare Institute, Washington, DC, 2002).

    Google Scholar 

  3. Smith, A.L. & Corrow, D.J. Modifications to husbandry and housing conditions of laboratory rodents for improved well-being. ILAR J. 46, 140–147 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Veissier, I. & Boissy, A. Stress and welfare: two complementary concepts that are intrinsically related to the animal's point of view. Physiol. Behav. 92, 429–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Pekow, C. Defining, measuring, and interpreting stress in laboratory animals. Contemp. Top. Lab. Anim. 44, 41–45 (2005).

    CAS  Google Scholar 

  6. Broom, D.M. & Fraser, A.F. Domestic Animal Behaviour and Welfare 4th edn. 58–69 (CAB International, Wallingford, UK, 2010).

    Google Scholar 

  7. Sharp, J.L., Zammit, T.G., Azar, T.A. & Lawson, D.M. Stress-like responses to common procedures in male rats housed alone or with other rats. Contemp. Top. Lab. Anim. Sci. 41, 8–14 (2002).

    PubMed  Google Scholar 

  8. Sharp, J., Azar, T. & Lawson, D. Does cage size affect heart rate and blood pressure of male rats at rest or after procedures that induce stress-like responses? Contemp. Top. Lab. Anim. Sci. 42, 8–12 (2003).

    CAS  PubMed  Google Scholar 

  9. Bekkedal, M.Y., Rossi, J. 3rd & Panksepp, J. Fetal and neonatal exposure to trimethylolpropane phosphate alters rat social behavior and emotional responsivity. Neurotoxicol. Teratol. 21, 435–443 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Tzavara, E.T., Monory, K., Hanoune, J. & Nomikos, G.G. Nicotine withdrawal syndrome: behavioural distress and selective up-regulation of the cyclic AMP pathway in the amygdala. Eur. J. Neurosci. 16, 149–153 (2002).

    Article  PubMed  Google Scholar 

  11. Sienkiewicz-Jarosz, H. et al. The effects of central administration of physostigmine in two models of anxiety. Pharmacol. Biochem. Behav. 75, 491–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. McCormick, C.M., Smith, C. & Mathews, I.Z. Effects of chronic social stress in adolescence on anxiety and neuroendocrine response to mild stress in male and female rats. Behav. Brain Res. 187, 228–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Rosenbaum, M.D., VandeWoude, S. & Johnson, T.E. Effects of cage-change frequency and bedding volume on mice and their microenvironment. J. Am. Assoc. Lab. Anim. Sci. 48, 763–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Costa, R., Tamascia, M.L., Nogueira, M.D., Casarini, D.E. & Marcondes, F.K. Handling of adolescent rats improves learning and memory and decreases anxiety. J. Am. Assoc. Lab. Anim. Sci. 51, 548–553 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalliokoski, O. et al. Mice do not habituate to metabolism cage housing—a three week study of male BALB/c mice. PloS ONE 8, e58460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seyle, H. Stress Without Distress (Lippincott Williams & Wilkins, Philadelphia, PA, 1974).

    Google Scholar 

  17. Greenberg, N., Carr, J.A. & Summers, C.H. Causes and consequences of stress. Integr. Comp. Biol. 42, 508–516 (2002).

    Article  PubMed  Google Scholar 

  18. Hahn, B.H., MacDermott, R.P., Jacobs, S.B., Pletscher, L.S. & Beale, M.G. Immunosuppressive effects of low doses of glucocorticoids: effects on autologous and allogeneic mixed leukocyte reactions. J. Immunol. 124, 2812–2817 (1980).

    CAS  PubMed  Google Scholar 

  19. Cupps, T.R. & Fauci, A.S. Corticosteroid-mediated immunoregulation in man. Immunol. Rev. 65, 133–155 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Fingerle-Rowson, G. et al. Regulation of macrophage migration inhibitory factor expression by glucocorticoids in vivo. Am. J. Pathol. 162, 47–56 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bauer, M.E. et al. Dexamethasone-induced effects on lymphocyte distribution and expression of adhesion molecules in treatment-resistant depression. Psychiatry Res. 113, 1–15 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Davis, A.K., Maney, D.L. & Maerz, J.C. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct. Ecol. 22, 760–772 (2008).

    Article  Google Scholar 

  23. Reimers, J.I., Bjerre, U., Mandrup-Poulsen, T. & Nerup, J. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases. Cytokine 6, 512–520 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Christensen, U.B. et al. Linomide increases plasma corticosterone in normal rats, but does not prevent the inhibitory action of IL-1 on beta-cells in vivo or ex vivo. Autoimmunity 23, 257–268 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Harris, J.G., Flower, R.J. & Perretti, M. Endogenous corticosteroids mediate the neutrophilia caused by platelet-activating factor in the mouse. Eur. J. Pharmacol. 283, 9–18 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Ellis, G.S. et al. G-CSF, but not corticosterone, mediates circulating neutrophilia induced by febrile-range hyperthermia. J. Appl. Physiol. 98, 1799–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kaufman, J. Diseases of the adrenal cortex of dogs and cats. Mod. Vet. Pract. 65, 513–516 (1984).

    CAS  PubMed  Google Scholar 

  28. Kronfol, Z., Turner, R., Nasrallah, H. & Winokur, G. Leukocyte regulation in depression and schizophrenia. Psychiatry Res. 13, 13–18 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Kronfol, Z., Turner, R., House, J.D. & Winokur, G. Elevated blood neutrophil concentration in mania. J. Clin. Psychiatry 47, 63–65 (1986).

    CAS  PubMed  Google Scholar 

  30. Darko, D.F., Rose, J., Gillin, J.C., Golshan, S. & Baird, S.M. Neutrophilia and lymphopenia in major mood disorders. Psychiatry Res. 25, 243–251 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Harding, E.J., Paul, E.S. & Mendl, M. Animal behaviour: cognitive bias and affective state. Nature 427, 312 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Burman, O.H.P., Parker, R., Paul, E.S. & Mendl, M. A spatial judgement task to determine background emotional state in laboratory rats, Rattus norvegicus. Anim. Behav. 76, 801–809 (2008).

    Article  Google Scholar 

  33. Kiyokawa, Y., Takeuchi, Y. & Mori, Y. Two types of social buffering differentially mitigate conditioned fear responses. Eur. J. Neurosci. 26, 3606–3613 (2007).

    Article  PubMed  Google Scholar 

  34. Nakayasu, T. & Kato, K. Is full physical contact necessary for buffering effects of pair housing on social stress in rats? Behav. Processes 86, 230–235 (2011).

    Article  PubMed  Google Scholar 

  35. Kodama, Y., Kiyokawa, Y., Takeuchi, Y. & Mori, Y. Twelve hours is sufficient for social buffering of conditioned hyperthermia. Physiol. Behav. 102, 188–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Kermani, H.R., Hoboubati, H., Esmaeili-Mahani, S. & Asadi-Shekaari, M. Induction of intervertebral disc cell apoptosis and degeneration by chronic unpredictable stress. J. Neurosurg. Spine (published online 7 March 2014; doi:10.3171/2014.1.SPINE13466).

  37. Alterman, A. et al. Functional and proteomic analysis of submandibular saliva in rats exposed to chronic stress by immobilization or constant light. Arch. Oral Biol. 57, 663–669 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Ewa, B.S., Beata, L., Ilona, K., Dariusz, S´. & Janusz, M. Brain derived neurotrophic factor (BDNF) containing neurons in the hypothalamic paraventricular and supraoptic nuclei of juvenile and middle-aged rats after chronic stress. Int. J. Dev. Neurosci. 30, 139–146 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. McClung, C.A. Circadian rhythms and mood regulation: insights from pre-clinical models. Eur. Neuropsychopharmacol. 21, S683–S693 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharp, J.L., Zammit, T.G. & Lawson, D.M. Stress-like responses to common procedures in rats: effect of the estrous cycle. Contemp. Top. Lab. Anim. Sci. 41, 15–22 (2002).

    CAS  PubMed  Google Scholar 

  41. Car, B.D., Eng, V.M., Everds, N.E. & Bounous, D.I. in The Laboratory Rat (eds. Suckow, M.A. Weisbroth, S.H. & Franklin, C.L.) 127–146 (Academic, Waltham, MA, 2005).

    Google Scholar 

  42. Burman, O.H., Parker, R.M., Paul, E.S. & Mendl, M.T. Anxiety-induced cognitive bias in non-human animals. Physiol. Behav. 98, 345–350 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Daniel Purtha, Nate Ooms, R'nld Wheeler and Jesus Bazan for their assistance with the data collection for this study. This study was supported in part by funds provided through the American Association for Laboratory Animal Science Grants for Laboratory Animal Science and the Johns Hopkins Center for the Alternatives to Animal Testing Animal Welfare Enhancement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debra L. Hickman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swan, M., Hickman, D. Evaluation of the neutrophil-lymphocyte ratio as a measure of distress in rats. Lab Anim 43, 276–282 (2014). https://doi.org/10.1038/laban.529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban.529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing