Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control

Abstract

Objective:

Adverse effects of obesity on glucose homeostasis are linked to low-grade adipose tissue inflammation and accumulation of lipids in non-adipose tissues. The goal of this study was to evaluate the role of adipose tissue plasticity in a less severe deterioration of glucose homeostasis in females compared with males during the course of high-fat (HF) feeding in mice.

Design:

Mice of the C57BL/6N strain were fed either a chow or obesogenic HF diet for up to 35 weeks after weaning. Metabolic markers and hormones in plasma, glucose homeostasis, adipocyte size and inflammatory status of gonadal (gWAT) and subcutaneous (scWAT) adipose depots and liver steatosis were evaluated at 15 and 35 weeks of HF feeding.

Results:

HF-fed males were heavier than females until week 20, after which the body weights stabilized at a similar level (55–58 g) in both sexes. Greater weight gain and fat accumulation in females were associated with larger adipocytes in gWAT and scWAT at week 35. Although adipose tissue macrophage infiltration was in general less frequent in scWAT, it was reduced in both fat depots of female as compared with male mice; however, the expression of inflammatory markers in gWAT was similar in both sexes at week 35. In females, later onset of the impairment of glucose homeostasis and better insulin sensitivity were associated with higher plasma levels of adiponectin (weeks 0, 15 and 35) and reduced hepatosteatosis (weeks 15 and 35).

Conclusions:

Compared with males, female mice demonstrate increased capacity for adipocyte enlargement in response to a long-term HF feeding, which is associated with reduced adipose tissue macrophage infiltration and lower fat deposition in the liver, and with better insulin sensitivity. Our data suggest that adipose tissue expandability linked to adiponectin secretion might have a role in the sex differences observed in obesity-associated metabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Krotkiewski M, Bjorntorp P, Sjostrom L, Smith U . Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 1983; 72: 1150–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frias JP, Macaraeg GB, Ofrecio J, Yu JG, Olefsky JM, Kruszynska YT . Decreased susceptibility to fatty acid-induced peripheral tissue insulin resistance in women. Diabetes 2001; 50: 1344–1350.

    Article  CAS  PubMed  Google Scholar 

  3. Priego T, Sanchez J, Pico C, Palou A . Sex-differential expression of metabolism-related genes in response to a high-fat diet. Obesity (Silver Spring) 2008; 16: 819–826.

    Article  CAS  Google Scholar 

  4. Guerre-Millo M, Leturque A, Girard J, Lavau M . Increased insulin sensitivity and responsiveness of glucose metabolism in adipocytes from female versus male rats. J Clin Invest 1985; 76: 109–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hevener A, Reichart D, Janez A, Olefsky J . Female rats do not exhibit free fatty acid-induced insulin resistance. Diabetes 2002; 51: 1907–1912.

    Article  CAS  PubMed  Google Scholar 

  6. Trevaskis JL, Meyer EA, Galgani JE, Butler AA . Counterintuitive effects of double-heterozygous null melanocortin-4 receptor and leptin genes on diet-induced obesity and insulin resistance in C57BL/6J mice. Endocrinology 2008; 149: 174–184.

    Article  CAS  PubMed  Google Scholar 

  7. Macotela Y, Boucher J, Tran TT, Kahn CR . Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 2009; 58: 803–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wajchenberg BL . Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000; 21: 697–738.

    Article  CAS  PubMed  Google Scholar 

  9. Cnop M, Landchild MJ, Vidal J, Havel PJ, Knowles NG, Carr DR et al. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments. Diabetes 2002; 51: 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  10. Enzi G, Gasparo M, Biondetti PR, Fiore D, Semisa M, Zurlo F . Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomography. Am J Clin Nutr 1986; 44: 739–746.

    Article  CAS  PubMed  Google Scholar 

  11. Clegg DJ, Brown LM, Woods SC, Benoit SC . Gonadal hormones determine sensitivity to central leptin and insulin. Diabetes 2006; 55: 978–987.

    Article  CAS  PubMed  Google Scholar 

  12. Arner E, Westermark PO, Spalding KL, Britton T, Ryden M, Frisen J et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 2010; 59: 105–109.

    Article  CAS  PubMed  Google Scholar 

  13. Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese zucker rats. J Clin Invest 1998; 101: 1354–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999; 4: 597–609.

    Article  CAS  PubMed  Google Scholar 

  15. Danforth Jr E . Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 2000; 26: 13.

    Article  CAS  PubMed  Google Scholar 

  16. Virtue S, Vidal-Puig A . It's not how fat you are, it's what you do with it that counts. PLoS Biol 2008; 6: e237.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol 2009; 29: 1575–1591.

    Article  CAS  PubMed  Google Scholar 

  18. Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 2009; 29: 4467–4483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grove KL, Fried SK, Greenberg AS, Xiao XQ, Clegg DJ . A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice. Int J Obes (Lond) 2010; 34: 989–1000.

    Article  CAS  Google Scholar 

  20. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116: 1494–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 2006; 281: 26602–26614.

    Article  CAS  PubMed  Google Scholar 

  22. Anderson EK, Gutierrez DA, Hasty AH . Adipose tissue recruitment of leukocytes. Curr Opin Lipidol 2010; 21: 172–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lumeng CN, Bodzin JL, Saltiel AR . Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117: 175–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lumeng CN, Delproposto JB, Westcott DJ, Saltiel AR . Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 2008; 57: 3239–3246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM . Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA 1994; 91: 4854–4858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. de Luca C, Olefsky JM . Inflammation and insulin resistance. FEBS Lett 2008; 582: 97–105.

    Article  CAS  PubMed  Google Scholar 

  28. Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW, DeFuria J, Jick Z et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007; 56: 2910–2918.

    Article  CAS  PubMed  Google Scholar 

  29. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46: 2347–2355.

    Article  CAS  PubMed  Google Scholar 

  30. Monteiro R, de Castro PMST, Calhau C, Azevedo I . Adipocyte size and liability to cell death. Obesity Surgery 2006; 16: 804–806.

    Article  PubMed  Google Scholar 

  31. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  32. Carling D . The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci 2004; 29: 18–24.

    Article  CAS  PubMed  Google Scholar 

  33. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000; 20: 1595–1599.

    Article  CAS  PubMed  Google Scholar 

  34. Berg AH, Combs TP, Du X, Brownlee M, Scherer PE . The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 2001; 7: 947–953.

    Article  CAS  PubMed  Google Scholar 

  35. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941–946.

    Article  CAS  PubMed  Google Scholar 

  36. Kim JY, van de WE, Laplante M, Azzara A, Trujillo ME, Hofmann SM et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 2007; 117: 2621–2637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 2002; 106: 2767–2770.

    Article  CAS  PubMed  Google Scholar 

  38. Cancello R, Tordjman J, Poitou C, Guilhem G, Bouillot JL, Hugol D et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 2006; 55: 1554–1561.

    Article  CAS  PubMed  Google Scholar 

  39. Tordjman J, Guerre-Millo M, Clement K . Adipose tissue inflammation and liver pathology in human obesity. Diabetes Metab 2008; 34: 658–663.

    Article  CAS  PubMed  Google Scholar 

  40. Hou XG, Moser S, Sarr MG, Thompson GB, Que FG, Jensen MD . Visceral and subcutaneous adipose tissue diacylglycerol acyltransferase activity in humans. Obesity (Silver Spring) 2009; 17: 1129–1134.

    CAS  Google Scholar 

  41. Kuda O, Jelenik T, Jilkova Z, Flachs P, Rossmeisl M, Hensler M et al. n-3 Fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia 2009; 52: 941–951.

    Article  CAS  PubMed  Google Scholar 

  42. Cinti S . The Adipose Organ. Editrice Kurtis: Milano, Italy, 1999.

    Google Scholar 

  43. Polak J, Kovacova Z, Jacek M, Klimcakova E, Kovacikova M, Vitkova M et al. An increase in plasma adiponectin multimeric complexes follows hypocaloric diet-induced weight loss in obese and overweight pre-menopausal women. Clin Sci (Lond) 2007; 112: 557–565.

    Article  CAS  Google Scholar 

  44. Rossmeisl M, Jelenik T, Jilkova Z, Slamova K, Kus V, Hensler M et al. Prevention and reversal of obesity and glucose intolerance in mice by DHA-derivatives. Obesity (Silver Spring) 2009; 17: 1023–1031.

    Article  CAS  Google Scholar 

  45. Ruzickova J, Rossmeisl M, Prazak T, Flachs P, Sponarova J, Vecka M et al. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 2004; 39: 1177–1185.

    Article  CAS  PubMed  Google Scholar 

  46. Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D et al. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 2003; 111: 91–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S et al. Impaired multimerization of human adiponectin mutants associated with diabetes - Molecular structure and multimer formation of adiponectin. J Biol Chem 2003; 278: 40352–40363.

    Article  CAS  PubMed  Google Scholar 

  48. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006; 116: 115–124.

    Article  CAS  PubMed  Google Scholar 

  49. Law IK, Xu A, Lam KS, Berger T, Mak TW, Vanhoutte PM et al. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 2010; 59: 872–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hotamisligil GS, Shargill NS, Spiegelman BM . Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91.

    Article  CAS  PubMed  Google Scholar 

  51. Takahashi K, Mizuarai S, Araki H, Mashiko S, Ishihara A, Kanatani A et al. Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem 2003; 278: 46654–46660.

    Article  CAS  PubMed  Google Scholar 

  52. Inouye KE, Shi H, Howard JK, Daly CH, Lord GM, Rollins BJ et al. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 2007; 56: 2242–2250.

    Article  CAS  PubMed  Google Scholar 

  53. Ghisletti S, Meda C, Maggi A, Vegeto E . 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 2005; 25: 2957–2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vegeto E, Belcredito S, Etteri S, Ghisletti S, Brusadelli A, Meda C et al. Estrogen receptor-alpha mediates the brain antiinflammatory activity of estradiol. Proc Natl Acad Sci USA 2003; 100: 9614–9619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Combs TP, Berg AH, Rajala MW, Klebanov S, Iyengar P, Jimenez-Chillaron JC et al. Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes 2003; 52: 268–276.

    Article  CAS  PubMed  Google Scholar 

  56. Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 2004; 145: 367–383.

    Article  CAS  PubMed  Google Scholar 

  57. Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet 2003; 361: 226–228.

    Article  CAS  PubMed  Google Scholar 

  58. Snijder MB, Heine RJ, Seidell JC, Bouter LM, Stehouwer CD, Nijpels G et al. Associations of adiponectin levels with incident impaired glucose metabolism and type 2 diabetes in older men and women: the hoorn study. Diabetes Care 2006; 29: 2498–2503.

    Article  CAS  PubMed  Google Scholar 

  59. Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem 2010; 285: 6153–6160.

    Article  CAS  PubMed  Google Scholar 

  60. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O et al. Dynamics of fat cell turnover in humans. Nature 2008; 453: 783–787.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research has received funding from the European Union's Seventh Framework Program FP7 2007-2013 under grant agreement no. 244995 (BIOCLAIMS Project), the Czech Science Foundation (303/08/0664), COST Action Mitofood (FA0602), the MSMT of the Czech Republic (OC08008), and EPAX a.s. (Aalesund, Norway). We thank Pavel Flachs for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kopecky.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medrikova, D., Jilkova, Z., Bardova, K. et al. Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int J Obes 36, 262–272 (2012). https://doi.org/10.1038/ijo.2011.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.87

Keywords

This article is cited by

Search

Quick links