Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection

Abstract

Recombinant adeno-associated virus (rAAV) vectors are increasingly being used as tools for gene therapy, and clinical trials have begun in patients with genetically linked retinal disorders. Intravitreal injection is optimal for the transduction of retinal ganglion cells (RGCs), although complete selectivity has not been achieved. There may also be advantages in using intravitreal approaches for the transduction of photoreceptors. Here we compared the cellular tropism and transduction efficiency of rAAV2/1, -2/2, -2/3, -2/4, -2/5, -2/6 and -2/8 in adult rat retina after intravitreal injection. Each vector encoded green fluorescent protein (GFP), and the number, laminar distribution and morphology of transduced GFP+ cells were determined using fluorescent microscopy. Assessment of transduced cell phenotype was based on cell morphology and immunohistochemistry. rAAV2/2 and rAAV2/6 transduced the greatest number of cells, whereas rAAV2/5 and rAAV2/8 were least efficient. Most vectors primarily transduced RGCs; however, rAAV2/6 had a more diverse tropism profile, with 46% identified as amacrine or bipolar cells, 23% as RGCs and 22% as Müller cells. Müller cells were also frequently transduced by rAAV2/4. The highest photoreceptor transduction was seen after intravitreal rAAV2/3 injection. These data facilitate the design and selection of rAAV vectors to target specific retinal cells, potentially leading to an improved gene therapy for various human retinal pathologies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. McCown TJ . Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther 2005; 5: 333–338.

    Article  CAS  PubMed  Google Scholar 

  2. Lowenstein PR, Mandel RJ, Xiong WD, Kroeger K, Castro MG . Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: the role of immunological synapses in understanding the cell biology of neuroimmune interactions. Curr Gene Ther 2007; 7: 347–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Surace EM, Auricchio A, Reich SJ, Rex T, Glover E, Pineles S et al. Delivery of adeno-associated virus vectors to the fetal retina: impact of viral capsid proteins on retinal neuronal progenitor transduction. J Virol 2003; 77: 7957–7963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stieger K, Colle MA, Dubreil L, Mendes-Madeira A, Weber M, Le Meur G et al. Subretinal delivery of recombinant AAV serotype 8 vector in dogs results in gene transfer to neurons in the brain. Mol Ther 2008; 16: 916–923.

    Article  CAS  PubMed  Google Scholar 

  5. Schlichtenbrede FC, Smith AJ, Bainbridge JW, Thrasher AJ, Salt TE, Ali RR . Improvement of neuronal visual responses in the superior colliculus in Prph2(Rd2/Rd2) mice following gene therapy. Mol Cell Neurosci 2004; 25: 103–110.

    Article  CAS  PubMed  Google Scholar 

  6. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Natkunarajah M, Trittibach P, McIntosh J, Duran Y, Barker SE, Smith AJ et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Therapy 2008; 15: 463–467.

    Article  CAS  PubMed  Google Scholar 

  8. Lebherz C, Maguire A, Tang W, Bennett J, Wilson JM . Novel AAV serotypes for improved ocular gene transfer. J Gene Med 2008; 10: 375–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S, Verhaagen J et al. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Therapy 2006; 13: 1328–1341.

    Article  CAS  PubMed  Google Scholar 

  10. Leaver SG, Cui Q, Bernard O, Harvey AR . Cooperative effects of bcl-2 and AAV-mediated expression of CNTF on retinal ganglion cell survival and axonal regeneration in adult transgenic mice. Eur J Neurosci 2006; 24: 3323–3332.

    Article  PubMed  Google Scholar 

  11. Harvey AR, Kamphuis W, Eggers R, Symons NA, Blits B, Niclou S et al. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. Mol Cell Neurosci 2002; 21: 141–157.

    Article  CAS  PubMed  Google Scholar 

  12. Auricchio A, Kobinger G, Anand V, Hildinger M, O'Connor E, Maguire AM et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 2001; 10: 3075–3081.

    Article  CAS  PubMed  Google Scholar 

  13. Bennicelli J, Wright JF, Komaromy A, Jacobs JB, Hauck B, Zelenaia O et al. Reversal of blindness in animal models of Leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther 2008; 16: 458–465.

    Article  CAS  PubMed  Google Scholar 

  14. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12: 1072–1082.

    Article  CAS  PubMed  Google Scholar 

  15. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  PubMed  Google Scholar 

  17. Atchison RW, Casto BC, Hammon WM . Adenovirus-associated defective virus particles. Science 1965; 149: 754–756.

    Article  CAS  PubMed  Google Scholar 

  18. Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 2004; 78: 6381–6388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chiorini JA, Kim F, Yang L, Kotin RM . Cloning and characterization of adeno-associated virus type 5. J Virol 1999; 73: 1309–1319.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Rutledge EA, Halbert CL, Russell DW . Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 1998; 72: 309–319.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Chiorini JA, Yang L, Liu Y, Safer B, Kotin RM . Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 1997; 71: 6823–6833.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Gao G, Alvira MR, Somanathan S, Lu Y, Vandenberghe LH, Rux JJ et al. Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci USA 2003; 100: 6081–6086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE . Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  25. Taymans JM, Vandenberghe LH, Haute CV, Thiry I, Deroose CM, Mortelmans L et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum Gene Ther 2007; 18: 195–206.

    Article  CAS  PubMed  Google Scholar 

  26. Yang GS, Schmidt M, Yan Z, Lindbloom JD, Harding TC, Donahue BA et al. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol 2002; 76: 7651–7660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harvey AR . Combined therapies in the treatment of neurotrauma: polymers, bridges and gene therapy in visual system repair. Neurodegener Dis 2007; 4: 300–305.

    Article  CAS  PubMed  Google Scholar 

  28. Harvey AR, Hu Y, Leaver SG, Mellough CB, Park K, Verhaagen J et al. Gene therapy and transplantation in CNS repair: the visual system. Prog Retin Eye Res 2006; 25: 449–489.

    Article  CAS  PubMed  Google Scholar 

  29. Hu Y, Leaver SG, Plant GW, Hendriks WT, Niclou SP, Verhaagen J et al. Lentiviral-mediated transfer of CNTF to Schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration. Mol Ther 2005; 11: 906–915.

    Article  CAS  PubMed  Google Scholar 

  30. Park K, Luo JM, Hisheh S, Harvey AR, Cui Q . Cellular mechanisms associated with spontaneous and ciliary neurotrophic factor-cAMP-induced survival and axonal regeneration of adult retinal ganglion cells. J Neurosci 2004; 24: 10806–10815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui Q, Yip HK, Zhao RC, So KF, Harvey AR . Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol Cell Neurosci 2003; 22: 49–61.

    Article  CAS  PubMed  Google Scholar 

  32. Zhong L, Zhao W, Wu J, Li B, Zolotukhin S, Govindasamy L et al. A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis. Mol Ther 2007; 15: 1323–1330.

    Article  CAS  PubMed  Google Scholar 

  33. Grieger JC, Samulski RJ . Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps. J Virol 2005; 79: 9933–9944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McGill TJ, Prusky GT, Douglas RM, Yasumura D, Matthes MT, Nune G et al. Intraocular CNTF reduces vision in normal rats in a dose-dependent manner. Invest Ophthalmol Vis Sci 2007; 48: 5756–5766.

    Article  PubMed  Google Scholar 

  35. Schlichtenbrede FC, MacNeil A, Bainbridge JW, Tschernutter M, Thrasher AJ, Smith AJ et al. Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2Rd2/Rd2 model of retinal degeneration. Gene Therapy 2003; 10: 523–527.

    Article  CAS  PubMed  Google Scholar 

  36. Buch PK, MacLaren RE, Durán Y, Balaggan KS, MacNeil A, Schlichtenbrede FC et al. In contrast to AAV-mediated CNTF expression, AAV-mediated GDNF expression enhances gene replacement therapy in rodent models of retinal degeneration. Mol Ther 2006; 14: 700–709.

    Article  CAS  PubMed  Google Scholar 

  37. Shevtsova Z, Malik JM, Michel U, Bähr M, Kügler S . Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 2005; 90: 53–59.

    Article  CAS  PubMed  Google Scholar 

  38. Kügler S, Lingor P, Schöll U, Zolotukhin S, Bähr M . Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units. Virology 2003; 311: 89–95.

    Article  PubMed  Google Scholar 

  39. Komáromy AM, Alexander JJ, Cooper AE, Chiodo VA, Glushakova LG, Acland GM et al. Targeting gene expression to cones with human cone opsin promoters in recombinant AAV. Gene Therapy 2008; 15: 1049–1055.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kerrison JB, Duh EJ, Yu Y, Otteson DC, Zack DJ . A system for inducible gene expression in retinal ganglion cells. Invest Ophthalmol Vis Sci 2005; 46: 2932–2939.

    Article  PubMed  Google Scholar 

  41. Stieger K, Le Meur G, Lasne F, Weber M, Deschamps JY, Nivard D et al. Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol Ther 2006; 13: 967–975.

    Article  CAS  PubMed  Google Scholar 

  42. Lamartina S, Cimino M, Roscilli G, Dammassa E, Lazzaro D, Rota R et al. Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy. J Gene Med 2007; 9: 862–874.

    Article  CAS  PubMed  Google Scholar 

  43. McGee Sanftner LH, Rendahl KG, Quiroz D, Coyne M, Ladner M, Manning WC et al. Recombinant AAV-mediated delivery of a tet-inducible reporter gene to the rat retina. Mol Ther 2001; 3: 688–696.

    Article  CAS  PubMed  Google Scholar 

  44. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A . Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 1999; 5: 71–77.

    Article  CAS  PubMed  Google Scholar 

  46. Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ . Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol 2006; 80: 8961–8969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Summerford C, Bartlett JS, Samulski RJ . AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5: 78–82.

    Article  CAS  PubMed  Google Scholar 

  48. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA . The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 2006; 80: 9831–9836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blankinship MJ, Gregorevic P, Allen JM, Harper SQ, Harper H, Halbert CL et al. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther 2004; 10: 671–678.

    Article  CAS  PubMed  Google Scholar 

  50. Halbert CL, Allen JM, Miller AD . Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol 2001; 75: 6615–6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu Z, Asokan A, Samulski RJ . Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14: 316–327.

    Article  CAS  PubMed  Google Scholar 

  52. Wu Z, Miller E, Agbandje-McKenna M, Samulski RJ . Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol 2006; 80: 9093–9103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hansen J, Qing K, Kwon HJ, Mah C, Srivastava A . Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts. J Virol 2000; 74: 992–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cao W, Li F, Steinberg RH, Lavail MM . Development of normal and injury-induced gene expression of aFGF, bFGF, CNTF, BDNF, GFAP and IGF-I in the rat retina. Exp Eye Res 2001; 72: 591–604.

    Article  CAS  PubMed  Google Scholar 

  55. Zaiss AK, Muruve DA . Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Therapy 2008; 15: 808–816.

    Article  CAS  PubMed  Google Scholar 

  56. Marc RE, Jones BW, Anderson JR, Kinard K, Marshak DW, Wilson JH et al. Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci 2007; 48: 3364–3371.

    Article  PubMed  Google Scholar 

  57. Marc RE, Jones BW, Watt CB, Strettoi E . Neural remodeling in retinal degeneration. Prog Retin Eye Res 2003; 22: 607–655.

    Article  PubMed  Google Scholar 

  58. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008; 105: 7827–7832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gigout L, Rebollo P, Clement N, Warrington Jr KH, Muzyczka N, Linden RM et al. Altering AAV tropism with mosaic viral capsids. Mol Ther 2005; 11: 856–865.

    Article  CAS  PubMed  Google Scholar 

  60. Carlisle RC, Benjamin R, Briggs SS, Sumner-Jones S, McIntosh J, Gill D et al. Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera. J Gene Med 2008; 10: 400–411.

    Article  CAS  PubMed  Google Scholar 

  61. Shin O, Kim SJ, Lee WI, Kim JY, Lee H . Effective transduction by self-complementary adeno-associated viruses of human dendritic cells with no alteration of their natural characteristics. J Gene Med 2008; 10: 762–769.

    Article  CAS  PubMed  Google Scholar 

  62. McCarty DM, Monahan PE, Samulski RJ . Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Therapy 2001; 8: 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  63. Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 2008; 118: 1955–1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hermens WT, ter Brake O, Dijkhuizen PA, Sonnemans MA, Grimm D, Kleinschmidt JA et al. Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system. Hum Gene Ther 1999; 10: 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  65. Grimm D, Kay MA, Kleinschmidt JA . Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 2003; 7: 839–850.

    Article  CAS  PubMed  Google Scholar 

  66. Snow RL, Robson JA . Ganglion cell neurogenesis, migration and early differentiation in the chick retina. Neuroscience 1994; 58: 399–409.

    Article  CAS  PubMed  Google Scholar 

  67. Greferath U, Grünert U, Wässle H . Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 1990; 301: 433–442.

    Article  CAS  PubMed  Google Scholar 

  68. Wässle H, Yamashita M, Greferath U, Grünert U, Müller F . The rod bipolar cell of the mammalian retina. Vis Neurosci 1991; 7: 99–112.

    Article  PubMed  Google Scholar 

  69. Kuzmanovic M, Dudley VJ, Sarthy VP . GFAP promoter drives Muller cell-specific expression in transgenic mice. Invest Ophthalmol Vis Sci 2003; 44: 3606–3613.

    Article  PubMed  Google Scholar 

  70. Riepe RE, Norenberg MD . Glutamine synthetase in the developing rat retina: an immunohistochemical study. Exp Eye Res 1978; 27: 435–444.

    Article  CAS  PubMed  Google Scholar 

  71. Shen F, Chen B, Danias J, Lee KC, Lee H, Su Y et al. Glutamate-induced glutamine synthetase expression in retinal Muller cells after short-term ocular hypertension in the rat. Invest Ophthalmol Vis Sci 2004; 45: 3107–3112.

    Article  PubMed  Google Scholar 

  72. Dijkstra CD, Döpp EA, Joling P, Kraal G . The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 1985; 54: 589–599.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Bastianelli E, Takamatsu K, Okazaki K, Hidaka H, Pochet R . Hippocalcin in rat retina. Comparison with calbindin-D28k, calretinin and neurocalcin. Exp Eye Res 1995; 60: 257–266.

    Article  CAS  PubMed  Google Scholar 

  74. Wässle H, Grünert U, Röhrenbeck J . Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin. J Comp Neurol 1993; 332: 407–420.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NHMRC and WA Neurotrauma research grants to ARH, an ARC grant to MJR and a grant from SenterNovem to Sander van Devender (AMT) and JV. We thank Dr Jenny Rodger for the gift of the glutamine synthetase antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A R Harvey.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website (http://www.nature.com/gt)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellström, M., Ruitenberg, M., Pollett, M. et al. Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection. Gene Ther 16, 521–532 (2009). https://doi.org/10.1038/gt.2008.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2008.178

Keywords

This article is cited by

Search

Quick links