Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration

Abstract

Hypoxia stimulates angiogenesis through the binding of hypoxia-inducible factors to the hypoxia-response element in the vascular endothelial growth factor (Vegf) promotor. Here, we report that deletion of the hypoxia-response element in the Vegf promotor reduced hypoxic Vegf expression in the spinal cord and caused adult-onset progressive motor neuron degeneration, reminiscent of amyotrophic lateral sclerosis. The neurodegeneration seemed to be due to reduced neural vascular perfusion. In addition, Vegf165 promoted survival of motor neurons during hypoxia through binding to Vegf receptor 2 and neuropilin 1. Acute ischemia is known to cause nonselective neuronal death. Our results indicate that chronic vascular insufficiency and, possibly, insufficient Vegf-dependent neuroprotection lead to the select degeneration of motor neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Muscle weakness in Vegf∂/∂ mice.
Figure 2: Motor neuron degeneration in Vegf∂/∂ mice.
Figure 3: Axon degeneration in Vegf∂/∂ mice.
Figure 4: Expression of Vegf and receptors in the spinal cord.
Figure 5: Neurotrophic function of Vegf.

Similar content being viewed by others

References

  1. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 6, 389–395 (2000).

    Article  CAS  Google Scholar 

  2. Ferrara, N. & Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nature Med. 5, 1359–1364 (1999).

    Article  CAS  Google Scholar 

  3. Miao, H.Q. et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J. Cell. Biol. 146, 233–242 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform- specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  Google Scholar 

  5. van Bruggen, N. et al. Vegf antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J. Clin. Invest. 104, 1613–1620 (1999).

    Article  CAS  Google Scholar 

  6. Hayashi, T. et al. Expression of angiogenic factors in rabbit spinal cord after transient ischaemia. Neuropathol. Appl. Neurobiol. 25, 63–71 (1999).

    Article  CAS  Google Scholar 

  7. Schratzberger, P. et al. Favorable effect of Vegf gene transfer on ischemic peripheral neuropathy. Nature Med. 6, 405–413 (2000).

    Article  CAS  Google Scholar 

  8. Sondell, M., Lundborg, G. & Kanje, M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci. 19, 5731–5740 (1999).

    Article  CAS  Google Scholar 

  9. Jin, K.L., Mao, X.O. & Greenberg, D.A. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc. Natl. Acad. Sci. USA 97, 10242–10247 (2000).

    Article  CAS  Google Scholar 

  10. Dor, Y. & Keshet, E. Ischemia-driven angiogenesis. Trends Cardiovasc. Med. 7, 289–294 (1997).

    Article  CAS  Google Scholar 

  11. Semenza, G.L. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem. Pharmacol. 59, 47–53 (2000).

    Article  CAS  Google Scholar 

  12. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  Google Scholar 

  13. Schultz, A. et al. Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation 100, 547–552 (1999).

    Article  CAS  Google Scholar 

  14. Bromberg, M.B. Pathogenesis of amyotrophic lateral sclerosis: a critical review. Curr. Opin. Neurol. 12, 581–588 (1999).

    Article  CAS  Google Scholar 

  15. Green, S.L. & Tolwani, R.J. Animal models for motor neuron disease. Lab. Anim. Sci. 49, 480–487 (1999).

    CAS  PubMed  Google Scholar 

  16. Robberecht, W.L. & de Jong, J.M.B.V. in Amyotrophic Lateral Sclerosis (eds. Brown, R.H.J., Meininger, V. & Swash, M.) 211–222 (Martin Dunitz, London, 2000).

    Google Scholar 

  17. Beal, M.F. et al. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol. 42, 644–654 (1997).

    Article  CAS  Google Scholar 

  18. Ferrante, R.J. et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69, 2064–2074 (1997).

    Article  CAS  Google Scholar 

  19. Marti, H.H. & Risau, W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc. Natl. Acad. Sci. USA 95, 15809–15814 (1998).

    Article  CAS  Google Scholar 

  20. Gupta, M., Mungai, P.T. & Goldwasser, E. A new transacting factor that modulates hypoxia-induced expression of the erythropoietin gene. Blood 96, 491–497 (2000).

    CAS  PubMed  Google Scholar 

  21. Stein, I. et al. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol. Cell. Biol. 18, 3112–3119 (1998).

    Article  CAS  Google Scholar 

  22. Levy, N.S., Chung, S., Furneaux, H. & Levy, A.P. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J. Biol. Chem. 273, 6417–6423 (1998).

    Article  CAS  Google Scholar 

  23. Damert, A., Ikeda, E. & Risau, W. Activator-protein-1 binding potentiates the hypoxia-induciblefactor-1- mediated hypoxia-induced transcriptional activation of vascular- endothelial growth factor expression in C6 glioma cells. Biochem. J. 327, 419–423 (1997).

    Article  CAS  Google Scholar 

  24. Dal Canto, M.C. & Gurney, M.E. Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am. J. Pathol. 145, 1271–1279 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, M.K. & Cleveland, D.W. Neuronal intermediate filaments. Annu. Rev. Neurosci. 19, 187–217 (1996).

    Article  CAS  Google Scholar 

  26. Martin, L.J., Price, A.C., Kaiser, A., Shaikh, A.Y. & Liu, Z. Mechanisms for neuronal degeneration in amyotrophic lateral sclerosis and in models of motor neuron death. Int. J. Mol. Med. 5, 3–13 (2000).

    CAS  PubMed  Google Scholar 

  27. Kawamura, Y., Okazaki, H., O'Brien, P.C. & Dych, P.J. Lumbar motoneurons of man: I) number and diameter histogram of alpha and gamma axons of ventral root. J. Neuropathol. Exp. Neurol. 36, 853–360 (1977).

    Article  CAS  Google Scholar 

  28. Cashman, N.R. et al. Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev. Dyn. 194, 209–221 (1992).

    Article  CAS  Google Scholar 

  29. Kong, J. & Xu, Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J. Neurosci. 18, 3241–3250 (1998).

    Article  CAS  Google Scholar 

  30. Theys, P.A., Peeters, E. & Robberecht, W. Evolution of motor and sensory deficits in amyotrophic lateral sclerosis estimated by neurophysiological techniques. J. Neurol. 246, 438–442 (1999).

    Article  CAS  Google Scholar 

  31. Kostic, V. et al. Midbrain dopaminergic neuronal degeneration in a transgenic mouse model of familial amyotrophic lateral sclerosis. Ann. Neurol. 41, 497–504 (1997).

    Article  CAS  Google Scholar 

  32. Williamson, T.L. et al. Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc. Natl. Acad. Sci. USA 95, 9631–9636 (1998).

    Article  CAS  Google Scholar 

  33. Ogunshola, O.O. et al. Neuronal Vegf expression correlates with angiogenesis in postnatal developing rat brain. Brain Res. Dev. Brain Res. 119, 139–153 (2000).

    Article  CAS  Google Scholar 

  34. Lang-Lazdunski, L. et al. Spinal cord ischemia. Development of a model in the mouse. Stroke 31, 208–213 (2000).

    Article  CAS  Google Scholar 

  35. Nohl, H., Staniek, K. & Gille, L. Imbalance of oxygen activation and energy metabolism as a consequence or mediator of aging. Exp. Gerontol. 32, 485–500 (1997).

    Article  CAS  Google Scholar 

  36. Ochiai-Kanai, R., Hasegawa, K., Takeuchi, Y., Yoshioka, H. & Sawada, T. Immunohistochemical nitrotyrosine distribution in neonatal rat cerebrocortical slices during and after hypoxia. Brain Res. 847, 59–70 (1999).

    Article  CAS  Google Scholar 

  37. Knight, J.A. Reactive oxygen species and the neurodegenerative disorders. Ann. Clin. Lab. Sci. 27, 11–25 (1997).

    CAS  PubMed  Google Scholar 

  38. Rivard, A. et al. Age-dependent defect in VEGF expression is associated with reduced HIF1a activity. J. Biol. Chem. 275, 29643–29647 (2000).

    Article  CAS  Google Scholar 

  39. Hellwig-Burgel, T., Rutkowski, K., Metzen, E., Fandrey, J. & Jelkmann, W. Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94, 1561–1567 (1999).

    CAS  PubMed  Google Scholar 

  40. He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739–751 (1997).

    Article  CAS  Google Scholar 

  41. Yu, H.H. & Kolodkin, A.L. Semaphorin signaling: a little less per-plexin. Neuron 22, 11–14 (1999).

    Article  CAS  Google Scholar 

  42. Raper, J.A. Semaphorins and their receptors in vertebrates and invertebrates. Curr. Opin. Neurobiol. 10, 88–94 (2000).

    Article  CAS  Google Scholar 

  43. Plate, K.H., Beck, H., Danner, S., Allegrini, P.R. & Wiessner, C. Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J. Neuropathol. Exp. Neurol. 58, 654–666 (1999).

    Article  CAS  Google Scholar 

  44. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5, 495–502 (1999).

    Article  CAS  Google Scholar 

  45. Gorselink, M. et al. Accurate measurements of in situ isometric contractile properties of hind limb plantar and dorsal flexor muscle complex of intact mice. Eur. J. Physiol. 439, 665–670 (2000).

    Article  CAS  Google Scholar 

  46. Vandenberghe, W., Van Den Bosch, L. & Robberecht, W. Glial cells potentiate kainate-induced neuronal death in a motoneuron- enriched spinal coculture system. Brain Res. 807, 1–10 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Bono (Synthélabo), S. Thom (Erlangen), A. Westmuckett and D. Goulding (London), and K. Bijnens, A. Bouché, S. De Cat, M. De Mol, I. Cartois, K. De Roover, E. Gils, B. Hermans, S. Jansen, L. Kieckens, Y.W. Man, A. Manderveld, K. Maris, A. Sahli, T. Vancoetsem, A. Vandenhoeck, P. Vanwesemael, B. Vanwetswinkel and S. Wyns (CTG, Belgium) for assistance. This work was supported by the European Community (Biomed BMH4-CT98-3380), Actie Levenslijn (#7.0019.98), FWO (G012500) and the Schwerpunktprogramm 1069 Angiogenese (GFG Pl 158-4/1). G.T. is a postdoctoral fellow of the DFG (Germany) B.O. is a fellow of the IWT, and L.V.D.B. is a postdoctoral fellow and W.R. is a clinical investigator of the FWO. This work was supported by GOA/93/03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oosthuyse, B., Moons, L., Storkebaum, E. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28, 131–138 (2001). https://doi.org/10.1038/88842

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing