Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visuo-haptic object-related activation in the ventral visual pathway

Abstract

The ventral pathway is involved in primate visual object recognition. In humans, a central stage in this pathway is an occipito–temporal region termed the lateral occipital complex (LOC), which is preferentially activated by visual objects compared to scrambled images or textures. However, objects have characteristic attributes (such as three-dimensional shape) that can be perceived both visually and haptically. Therefore, object-related brain areas may hold a representation of objects in both modalities. Using fMRI to map object-related brain regions, we found robust and consistent somatosensory activation in the occipito–temporal cortex. This region showed clear preference for objects compared to textures in both modalities. Most somatosensory object-selective voxels overlapped a part of the visual object-related region LOC. Thus, we suggest that neuronal populations in the occipito–temporal cortex may constitute a multimodal object-related network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Somatosensory clusters in the occipito–temporal region showing multimodal (visuo-haptic) object selectivity.
Figure 2: The magnitude of activation reveals multimodal (visuo-haptic) object selectivity in the occipito–temporal region.
Figure 3: Cortical maps and time course of regions showing preferential somatosensory, visual and multimodal (visuo-haptic) object activation in one subject (QE).
Figure 4: Voxels showing multimodal (visuo-haptic) object selectivity and averaged time course across subjects.

Similar content being viewed by others

References

  1. DeYoe, E. & Van Essen D. C. Concurrent processing streams in monkey visual cortex. Trends Neurosci. 115, 219–226 (1988).

    Article  Google Scholar 

  2. Livingstone, M. S. & Hubel, D. E. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740–749 (1988).

    Article  CAS  Google Scholar 

  3. Merigan, W. H. & Maunsell, J. H. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16, 3180–3191 (1993).

    Article  Google Scholar 

  4. Haxby, J. V. et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc. Natl. Acad. Sci. USA 88, 1621–1625 (1991).

    Article  CAS  Google Scholar 

  5. Sary, G., Vogels R. & Orban, G. A. Cue-invariant shape selectivity of macaque inferior temporal neurons. Science 260, 995–997 (1993).

    Article  CAS  Google Scholar 

  6. Grill-Spector, K. et al. Cue invariant activation in object-related areas of the human occipital lobe. Neuron 21, 191–202 (1998).

    Article  CAS  Google Scholar 

  7. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 92, 8135–8139 (1995).

    Article  CAS  Google Scholar 

  8. Tootell, R. B. H., Dale, A. M., Sereno, I. & Malach, R. New images from human visual cortex. Trends Neurosci. 19, 481–489 (1996).

    Article  CAS  Google Scholar 

  9. Grill-Spector K., Kushnir T., Hendler, T. & Malach R. The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci . 3, 837–843 (2000).

    Article  CAS  Google Scholar 

  10. Kourtzi, Z. & Kanwisher, N. Cortical regions involved in perceiving object shape. J. Neurosci. 20, 3310–3318 (2000).

    Article  CAS  Google Scholar 

  11. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

  12. Ishai, A., Ungerleider, L. G. & Haxby, J. H. Distributed neural systems for the generation of visual images. Neuron 28, 979–990 (2000).

    Article  CAS  Google Scholar 

  13. Roland, P. E., O'Sullivan, B. & Kawashima, R. Shape and roughness activates different somatosensory areas in the human brain. Proc. Natl. Acad. Sci. USA 95, 3295–3300 (1998).

    Article  CAS  Google Scholar 

  14. O'Sullivan, B., Roland, P. E. & Kawashima, R. A PET Study of somatosensory discrimination in man: microgeometry versus macrogeometry. Eur. J. Neurosci. 6, 137–148 (1994).

    Article  CAS  Google Scholar 

  15. Tanaka, K. Neuronal mechanisms of object recognition. Science 262, 685–688 (1993).

    Article  CAS  Google Scholar 

  16. Tanaka, K. Mechanisms of visual object recognition: monkey and human studies. Curr. Opin. Neurosci. 7, 523–529 (1997).

    Article  CAS  Google Scholar 

  17. Desimone, R., Albright, T. D., Gross, C. G. & Bruce, C. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 4, 2051–2061 (1984).

    Article  CAS  Google Scholar 

  18. Ito, M., Tamura, H., Fujita, I. & Tanaka, K. Size and position invariance of neuronal responses in monkey inferotemporal cortex. J. Neurophysiol. 73, 218–226 (1995).

    Article  CAS  Google Scholar 

  19. Logothetis, N. K., Pauls, J. & Poggio, T. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5, 552–563 (1995).

    Article  CAS  Google Scholar 

  20. Logothetis, N. K. & Sheinberg, D. L. Visual object recognition. Annu. Rev. Neurosci. 19, 577–621 (1996).

    Article  CAS  Google Scholar 

  21. Saleem, K. S., Suzuki, W., Tanaka, K. & Hashikawa, T. Connections between anterior inferotemporal cortex and superior temporal sulcus regions in the macaque monkey. J. Neurosci. 20, 5083–5101 (2000).

    Article  CAS  Google Scholar 

  22. Hikosaka, K., Iwai, E., Saito, H. A. & Tanaka, K. Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. J. Neurophysiol. 60, 1615–1637 (1988).

    Article  CAS  Google Scholar 

  23. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    Article  CAS  Google Scholar 

  24. Sadato, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 (1996).

    Article  CAS  Google Scholar 

  25. Cohen, L. G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997).

    Article  CAS  Google Scholar 

  26. Cavada, C. & Goldman-Rakic, P. C. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

    Article  CAS  Google Scholar 

  27. Neal, J. W., Pearson, R. C. & Powell, T. P. The connections of area PG, 7a, with cortex in the parietal, occipital and temporal lobes of the monkey. Brain Res. 532, 249–264 (1990).

    Article  CAS  Google Scholar 

  28. Anderson, R. A., Asanuma, C., Essick, G. & Siegel, R. M. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 296, 65–113 (1990).

    Article  Google Scholar 

  29. Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    Article  CAS  Google Scholar 

  30. Kaas, J. H., Merzenich, M. M. & Killackey, H. P. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu. Rev. Neurosci. 6, 325–356 (1983).

    Article  CAS  Google Scholar 

  31. Kaas, J. H. Plasticity of sensory and motor maps in adult mammals. Annu. Rev. Neurosci. 14, 137–167 (1991).

    Article  CAS  Google Scholar 

  32. Pons, T. P. Reorganization of the brain. Nat. Med. 4, 561–562 (1998).

    Article  CAS  Google Scholar 

  33. Pons, T. P., Garraghty, P. E. & Mishkin, M. Lesion-induced plasticity in the second somatosensory cortex of adult macaques. Proc. Natl. Acad. Sci. USA 85, 5279–5281 (1988).

    Article  CAS  Google Scholar 

  34. Rauschecker, J. P. Compensatory plasticity and sensory substitution in the cerebral cortex. Trends Neurosci. 18, 36–43 (1995).

    Article  CAS  Google Scholar 

  35. Engel, S. A., Glover, G. A. & Wandell, B. A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

  36. Serano, S. C. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  Google Scholar 

  37. DeYoe, E. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2382–2386 (1996).

    Article  CAS  Google Scholar 

  38. Grill-Spector, K. et al. A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum. Brain Mapp. 6, 316–328 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Harel for the cortex reconstruction, E. Okon for technical assistance and design, and I. Levy for software development. We thank S. Hochstein, G. Avidan-Carmel and U. Hason for their comments. This study was funded by the German-Israeli Foundation for Scientific Research and Development (GIF) grant number I-576-040.01/98 and the Israel Academy of Sciences and Humanities grant 8009/00-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Zohary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amedi, A., Malach, R., Hendler, T. et al. Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4, 324–330 (2001). https://doi.org/10.1038/85201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing