Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo intracellular recording and perturbation of persistent activity in a neural integrator

Abstract

To investigate the mechanisms of persistent neural activity, we obtained in vivo intracellular recordings from neurons in an oculomotor neural integrator of the goldfish during spontaneous saccades and fixations. Persistent changes in firing rate following saccades were associated with step changes in interspike membrane potential that were correlated with changes in eye position. Perturbation of persistent activity with brief intracellular current pulses designed to mimic saccadic input only induced transient changes of firing rate and membrane potential. When neurons were hyperpolarized below action potential threshold, position-correlated step changes in membrane potential remained. Membrane potential fluctuations were greater during more depolarized steps. These results suggest that sustained changes in firing rate are supported not by either membrane multistability or changes in pacemaker currents, but rather by persistent changes in the rate or amplitude of synaptic inputs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Position neuron discharge and functional architecture of oculomotor pathways.
Figure 2: Membrane potential changes during transitions in fixation position.
Figure 3: Persistent change in firing rate and eye position correlated with persistent change in membrane potential.
Figure 4: Step-like changes in membrane potential in the presence of hyperpolarizing current.
Figure 5: Transient depolarizing current injection during single fixations did not induce persistent increase of discharge rate or membrane potential.
Figure 6: Transient hyperpolarizing current injection during single fixations did not induce persistent decrease of discharge rate or membrane potential.
Figure 7: Persistent changes in the amplitude of membrane potential fluctuations correlated with steps in membrane potential.

Similar content being viewed by others

References

  1. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–173 (1971).

    Article  CAS  Google Scholar 

  2. Fuster, J. M. Memory in the Cerebral Cortex (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  3. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485 (1995).

    Article  CAS  Google Scholar 

  4. Schultz, W. & Romo, R. Role of primate basal ganglia and frontal cortex in the internal generation of movements. I. Preparatory activity in the anterior striatum. Exp. Brain. Res. 91, 363–384 (1992).

    Article  CAS  Google Scholar 

  5. McFarland, J. L. & Fuchs, A. F. Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. J. Neurophysiol. 68, 319–332 (1992).

    Article  CAS  Google Scholar 

  6. Lopez-Barneo, J., Darlot, C., Berthoz, A. & Baker, R. Neuronal activity in prepositus nucleus correlated with eye movement in the alert cat. J. Neurophysiol. 47, 329–352 (1982).

    Article  CAS  Google Scholar 

  7. Pastor, A. M., de la Cruz, R. R. & Baker, R. Eye position and eye velocity integrators reside in separate brainstem nuclei. Proc. Natl. Acad. Sci. USA 91, 807–811 (1994).

    Article  CAS  Google Scholar 

  8. Prut, Y. & Fetz, E. E. Primate spinal interneurons show pre-movement instructed delay activity. Nature 401, 590–594 (1999).

    Article  CAS  Google Scholar 

  9. Robinson, D. A. Integrating with neurons. Annu. Rev. Neurosci. 12, 33–45 (1989).

    Article  CAS  Google Scholar 

  10. Easter, S. S. Spontaneous eye movements in the goldfish. Vision Res. 11, 333–342 (1971).

    Article  Google Scholar 

  11. Aksay, E., Baker, R., Seung, H. S. & Tank, D. W. Anatomy and discharge properties of pre-motor neurons in the goldfish medulla that have eye-position signals during fixations. J. Neurophysiol. 84, 1035–1049 (2000).

    Article  CAS  Google Scholar 

  12. Skavenski, A. A. & Robinson, D. A. Role of abducens neurons in vestibuloocular reflex. J. Neurophysiol. 36, 724–738 (1973).

    Article  CAS  Google Scholar 

  13. Robinson, D. A. in Handbook of Physiology (eds. Brookhart, J. M. & Mountcastle, V. B.) 1275–1320 (American Physiology Society, Bethesda, Maryland, 1981).

    Google Scholar 

  14. Seung, H. S. How the brain keeps the eyes still. Proc. Natl. Acad. Sci. USA 93, 13339–13344 (1996).

    Article  CAS  Google Scholar 

  15. Keller, E. L. & Robinson, D. A. Absence of a stretch reflex in extraocular muscles of the monkey. J. Neurophysiol. 34, 908–919 (1971).

    Article  CAS  Google Scholar 

  16. Hounsgaard, J., Hultborn, H., Jesperen, B. & Kiehn, O. Bistability of α-motoneurons in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J. Physiol. (Lond.) 405, 345–367 (1988).

    Article  Google Scholar 

  17. Kiehn, O. Plateau potential and active integration in the 'final common pathway' for motor behavior. Trends Neurosci. 14, 68–73 (1991).

    Article  CAS  Google Scholar 

  18. Reuveni, I., Friedman, A., Amitai, Y. & Gutnick, M. J. Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogenous distribution of HVA Ca2+ channels in dendrites. J. Neurosci. 13, 4609–4621 (1993).

    Article  CAS  Google Scholar 

  19. Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z. & Golowasch, J. Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Acad. Sci. USA 93, 13481–13486 (1996).

    Article  CAS  Google Scholar 

  20. Catterall, W. A. Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Adv. Neurol. 79, 441–456 (1999).

    CAS  PubMed  Google Scholar 

  21. Kamath, B. Y. & Keller, E. L. A neurological integrator for the oculomotor control system. Math. Biosci. 30, 341–352 (1976).

    Article  Google Scholar 

  22. Rosen, M. J. A theoretical neural integrator. IEEE Trans. Biomed. Eng. 19, 362–367 (1972).

    Article  CAS  Google Scholar 

  23. Cannon, S. C., Robinson, D. A. & Shamma, S. A proposed neural network for the integrator of the oculomotor system. Biol. Cybern. 49, 127–136 (1983).

    Article  CAS  Google Scholar 

  24. Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259–271 (2000).

    Article  CAS  Google Scholar 

  25. Llinás, R. R. & Yarom, Y. Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J. Physiol. (Lond.) 376, 163–182 (1986).

    Article  Google Scholar 

  26. Amitai, Y. Membrane potential oscillations underlying firing patterns in neocortical neurons. Neuroscience 63, 151–161 (1994).

    Article  CAS  Google Scholar 

  27. Wang, X. J. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol. 79, 1549–1566 (1998).

    Article  CAS  Google Scholar 

  28. Ermentrout, B. Linearization of F-I curves by adaptation. Neural Comput. 10, 1721–1729 (1998).

    Article  CAS  Google Scholar 

  29. Kiehn, O. & Eken, T. Functional role of plateau potentials in vertebrate motor neurons. Curr. Opin. Neurobiol. 8, 746–752 (1998).

    Article  CAS  Google Scholar 

  30. Katz, B. & Miledi, R. The characteristics of 'end-plate noise' produced by different depolarizing drugs. J. Physiol. (Lond.) 230, 707–717 (1973).

    Article  CAS  Google Scholar 

  31. Perrier, J.-F. & Hounsgaard, J. Ca (2+)-activated nonselective cationic current (I(CAN)) in turtle motoneurons. J. Neurophysiol. 82, 730–735 (1999).

    Article  CAS  Google Scholar 

  32. Cannon, S. C. & Robinson, D. A. Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J. Neurophysiol. 57, 1383–1409 (1987).

    Article  CAS  Google Scholar 

  33. Godaux, E., Cheron, G. & Gravis, F. Eye movements evoked by microstimulations in the brainstem of the alert cat. Exp. Brain Res. 77, 94–102 (1989).

    Article  CAS  Google Scholar 

  34. Shen, L. Neural integration by short term potentiation. Biol. Cybern. 61, 319–325 (1989).

    Article  CAS  Google Scholar 

  35. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).

    Article  CAS  Google Scholar 

  36. Destexhe, A. & Pare, D. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999).

    Article  CAS  Google Scholar 

  37. Robinson, D. A. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Electron. 10, 137–145 (1963).

    Article  CAS  Google Scholar 

  38. Pastor, A. M., Torres, B., Delgado-Garcia, J. M. & Baker, R. Discharge characteristics of medial rectus and abducens motoneurons in the goldfish. J. Neurophysiol. 66, 2125–2140 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Major and F. Helmchen for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Baker or D. W. Tank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksay, E., Gamkrelidze, G., Seung, H. et al. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat Neurosci 4, 184–193 (2001). https://doi.org/10.1038/84023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing