Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synaptic plasticity and dynamic modulation of the postsynaptic membrane

Abstract

The biochemical composition of the postsynaptic membrane and the structure of dendritic spines may be rapidly modulated by synaptic activity. Here we review these findings, discuss their implications for long-term potentiation (LTP) and long-term depression (LTD) and propose a model of sequentially occurring expression mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coated vesicles in dendritic spines.
Figure 2: Proposed sequence of mechanisms involved in expression of LTP.

Similar content being viewed by others

References

  1. Harris, K. M. & Kater, S. B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371 (1994).

    Article  CAS  Google Scholar 

  2. Segal, M., Korkotian, E. & Murphy, D. D. Dendritic spine formation and pruning: common cellular mechanisms? Trends Neurosci. 23, 53–57 (2000).

    Article  CAS  Google Scholar 

  3. Muller, D. Ultrastructural plasticity of excitatory synapses. Rev. Neurosci. 8, 77–93 (1997).

    Article  CAS  Google Scholar 

  4. Edwards, F. A. Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation. Physiol. Rev. 75, 759–787 (1995).

    Article  CAS  Google Scholar 

  5. Lisman, J. E. & Harris, K. M. Quantal analysis and synaptic anatomy—integrating two views of hippocampal plasticity. Trends Neurosci. 16, 141–147 (1993).

    Article  CAS  Google Scholar 

  6. van Rossum, D. & Hanisch, U. K. Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? Trends Neurosci. 22, 290–295 (1999).

    Article  CAS  Google Scholar 

  7. Matus, A. Postsynaptic actin and neuronal plasticity. Curr. Opin. Neurobiol. 9, 561–565 (1999).

    Article  CAS  Google Scholar 

  8. Dailey, M. E. & Smith, S. J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996).

    Article  CAS  Google Scholar 

  9. Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    Article  CAS  Google Scholar 

  10. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    Article  CAS  Google Scholar 

  11. Fiala, J. C., Feinberg, M., Popov, V. & Harris, K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    Article  CAS  Google Scholar 

  12. Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    Article  CAS  Google Scholar 

  13. Kaech, S., Brinkhaus, H. & Matus, A. Volatile anesthetics block actin-based motility in dendritic spines. Proc. Natl. Acad. Sci. USA 96, 10433–10437 (1999).

    Article  CAS  Google Scholar 

  14. Kim, C. H. & Lisman, J. E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 19, 4314–4324 (1999).

    Article  CAS  Google Scholar 

  15. Hosokawa, T., Rusakov, D. A., Bliss, T. V. & Fine, A. Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J. Neurosci. 15, 5560–5573 (1995).

    Article  CAS  Google Scholar 

  16. Halpain, S., Hipolito, A. & Saffer, L. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci. 18, 9835–9844 (1998).

    Article  CAS  Google Scholar 

  17. Korkotian, E. & Segal, M. Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 96, 12068–12072 (1999).

    Article  CAS  Google Scholar 

  18. Emptage, N., Bliss, T. V. & Fine, A. Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines. Neuron 22, 115–124 (1999).

    Article  CAS  Google Scholar 

  19. McKinney, R. A., Capogna, M., Durr, R., Gahwiler, B. H. & Thompson, S. M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 2, 44–49 (1999).

    Article  CAS  Google Scholar 

  20. Kirov, S. A. & Harris, K. M. Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated. Nat. Neurosci. 2, 878–883 (1999).

    Article  CAS  Google Scholar 

  21. Harris, K. M. Calcium from internal stores modifies dendritic spine shape. Proc. Natl. Acad. Sci. USA 96, 12213–12215 (1999).

    Article  CAS  Google Scholar 

  22. Lynch, G. & Baudry, M. The biochemistry of memory: a new and specific hypothesis. Science 224, 1057–1063 (1984).

    Article  CAS  Google Scholar 

  23. Liao, D. Z., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    Article  CAS  Google Scholar 

  24. Isaac, J. T. R., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses. Implications for the expression of LTP. Neuron 15, 427–434 (1995).

    Article  CAS  Google Scholar 

  25. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996).

    Article  CAS  Google Scholar 

  26. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365–376 (1999).

    Article  CAS  Google Scholar 

  27. Song, I. et al. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393–400 (1998).

    Article  CAS  Google Scholar 

  28. Osten, P. et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 21, 99–110 (1998).

    Article  CAS  Google Scholar 

  29. Lüscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  Google Scholar 

  30. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 (1998).

    Article  CAS  Google Scholar 

  31. Lissin, D. V., Carroll, R. C., Nicoll, R. A., Malenka, R. C. & von Zastrow, M. Rapid, activation-induced redistribution of ionotropic glutamate receptors in cultured hippocampal neurons. J. Neurosci. 19, 1263–1272 (1999).

    Article  CAS  Google Scholar 

  32. Carroll, R. C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 14112–14117 (1999).

    Article  CAS  Google Scholar 

  33. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  34. Maletic-Savatic, M. & Malinow, R. Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part I: trans-Golgi network-derived organelles undergo regulated exocytosis. J. Neurosci. 18, 6803–6813 (1998).

    Article  CAS  Google Scholar 

  35. Lledo, P. M., Zhang, X., Sudhof, T. C., Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403 (1998).

    Article  CAS  Google Scholar 

  36. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  37. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    Article  CAS  Google Scholar 

  38. Lüthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF-GluR2 interaction. Neuron 24, 389–399 (1999).

    Article  Google Scholar 

  39. Man, H.-Y. et al. Regulation of AMPA receptor–mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000).

    Article  CAS  Google Scholar 

  40. Wang, Y. T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000).

    Article  CAS  Google Scholar 

  41. Ziff, E. B. Enlightening the postsynaptic density. Neuron 19, 1163–1174 (1997).

    Article  CAS  Google Scholar 

  42. Kennedy, M. B. The postsynaptic density at glutamatergic synapses. Trends Neurosci. 20, 264–268 (1997).

    Article  CAS  Google Scholar 

  43. Kennedy, M. B. Signal transduction molecules at the glutamatergic postsynaptic membrane. Brain Res. Rev. 26, 243–257 (1998).

    Article  CAS  Google Scholar 

  44. Schuster, T., Krug, M. & Wenzel, J. Spinules in axospinous synapses of the rat dentate gyrus: changes in density following long-term potentiation. Brain Res. 523, 171–174 (1990).

    Article  CAS  Google Scholar 

  45. Geinisman, Y., deToledo-Morrell, L. & Morrell, F. Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res. 566, 77–88 (1991).

    Article  CAS  Google Scholar 

  46. Geinisman, Y. Perforated axospinous synapses with multiple, completely partitioned transmission zones: probable structural intermediates in synaptic plasticity. Hippocampus 3, 417–433 (1993).

    Article  CAS  Google Scholar 

  47. Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R. & Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425 (1999).

    Article  CAS  Google Scholar 

  48. Buchs, P. A. & Muller, D. Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl. Acad. Sci. USA 93, 8040–8045 (1996).

    Article  CAS  Google Scholar 

  49. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    Article  CAS  Google Scholar 

  50. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2, 618–624 (1999).

    Article  CAS  Google Scholar 

  51. Desmond, N. L. & Weinberg, R. J. Enhanced expression of AMPA receptor protein at perforated axospinous synapses. Neuroreport 9, 857–860 (1998).

    Article  CAS  Google Scholar 

  52. Spacek, J. & Harris, K. M. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. 17, 190–203 (1997).

    Article  CAS  Google Scholar 

  53. Carlin, R. K. & Siekevitz, P. Plasticity in the central nervous system: do synapses divide? Proc. Natl. Acad. Sci. USA 80, 3517–3521 (1983).

    Article  CAS  Google Scholar 

  54. Weeks, A. C., Ivanco, T. L., Leboutillier, J. C., Racine, R. J. & Petit, T. L. Sequential changes in the synaptic structural profile following long-term potentiation in the rat dentate gyrus: I. The intermediate maintenance phase. Synapse 31, 97–107 (1999).

    Article  CAS  Google Scholar 

  55. Geinisman, Y., Detoledo-Morrell, L., Morrell, F., Persina, I. S. & Beatty, M. A. Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J. Comp. Neurol. 368, 413–423 (1996).

    Article  CAS  Google Scholar 

  56. Trommald, M., Hulleberg, G. & Andersen, P. Long-term potentiation is associated with new excitatory spine synapses on rat dentate granule cells. Learn. Mem. 3, 218–228 (1996).

    Article  CAS  Google Scholar 

  57. Sorra, K. E. & Harris, K. M. Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J. Neurosci. 18, 658–671 (1998).

    Article  CAS  Google Scholar 

  58. Sorra, K. E., Fiala, J. C. & Harris, K. M. Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation. J. Comp. Neurol. 398, 225–240 (1998).

    Article  CAS  Google Scholar 

  59. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    Article  CAS  Google Scholar 

  60. Soderling, T. R. & Derkach, V. A. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 23, 75–80 (2000).

    Article  CAS  Google Scholar 

  61. Barria, A., Derkach, V. & Soderling, T. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J. Biol. Chem. 272, 32727–32730 (1997).

    Article  CAS  Google Scholar 

  62. Braun, A. P. & Schulman, H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu. Rev. Physiol. 57, 417–445 (1995).

    Article  CAS  Google Scholar 

  63. Fukunaga, K., Stoppini, L., Miyamoto, E. & Muller, D. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 268, 7863–7867 (1993).

    CAS  PubMed  Google Scholar 

  64. Shen, K. & Meyer, T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284, 162–166 (1999).

    Article  CAS  Google Scholar 

  65. Mammen, A. L., Kameyama, K., Roche, K. W. & Huganir, R. L. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. Biol. Chem. 272, 32528–32533 (1997).

    Article  CAS  Google Scholar 

  66. Lledo, P.-M. et al. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl. Acad. Sci. USA 92, 11175–11179 (1995).

    Article  CAS  Google Scholar 

  67. McGlade-McCulloh, E., Yamamoto, H., Tan, S. E., Brickey, D. A. & Soderling, T. R. Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature 362, 640–642 (1993).

    Article  CAS  Google Scholar 

  68. Derkach, V., Barria, A. & Soderling, T. R. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 3269–3274 (1999).

    Article  CAS  Google Scholar 

  69. Benke, T. A., Luthi, A., Isaac, J. T. & Collingridge, G. L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 (1998).

    Article  CAS  Google Scholar 

  70. Diamond, J. S., Bergles, D. E. & Jahr, C. E. Glutamate release monitored with astrocyte transporter currents during LTP. Neuron 21, 425–433 (1998).

    Article  CAS  Google Scholar 

  71. Lüscher, C., Malenka, R. C. & Nicoll, R. A. Monitoring glutamate release during LTP with glial transporter currents. Neuron 21, 435–441 (1998).

    Article  Google Scholar 

  72. Sanes, J. R. & Lichtman, J. W. Can molecules explain long-term potentiation? Nat. Neurosci. 2, 597–604 (1999).

    Article  CAS  Google Scholar 

  73. Missler, M. & Sudhof, T. C. Neurexins: three genes and 1001 products. Trends Genet. 14, 20–26 (1998).

    Article  CAS  Google Scholar 

  74. Song, J. Y., Ichtchenko, K., Sudhof, T. C. & Brose, N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc. Natl. Acad. Sci. USA 96, 1100–1105 (1999).

    Article  CAS  Google Scholar 

  75. Gan, W. B. & Lichtman, J. W. Synaptic segregation at the developing neuromuscular junction. Science 282, 1508–1511 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Frerking for comments on the manuscript, N. Toni for providing the EM pictures as well as G. von Kaenel for technical assistance with Fig. 1. C.L. is a SCORE A recipient of the Swiss National Science Foundation. R.A.N. is a member of the Keck Center for Integrative Neuroscience and the Silvio Conte Center for Neuroscience Research. He is supported by grants from the NIH and Bristol-Myers Squibb. R.C.M. is supported by grants from the NIH. D.M. is supported by grants of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lüscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüscher, C., Nicoll, R., Malenka, R. et al. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3, 545–550 (2000). https://doi.org/10.1038/75714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing