Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A measure of striatal function predicts motor stereotypy

Abstract

To identify basal ganglia circuit dysfunctions that might produce repetitive behaviors known as motor stereotypies, we applied psychomotor stimulants and a direct dopamine receptor agonist to induce different levels of stereotypy in rats. We then used a gene induction assay to measure the functional activation of neurons in the neurochemically distinct compartments of the striatum, the striosomes and the extrastriosomal matrix. The amount by which activation in the striosomes exceeded activation in the matrix predicted the degree of motor stereotypy induced by the drug treatments. These results suggest that imbalance between compartmentally organized basal ganglia circuits may represent a neural correlate of motor stereotypy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cocaine, amphetamine and apomorphine treatments induce motor stereotypy and increased relative striosomal activation (ISMP ratios) in the caudoputamen.
Figure 2: Fos expression in the striosomal compartment is increased relative to expression in the matrix by chronic psychomotor stimulant treatments and by increasing doses of apomorphine.
Figure 3: Striosome-predominant pattern of Fos staining occurs with chronic amphetamine treatment.
Figure 4: Correlations between drug-induced motor stereotypy and gene-based measures of striatal activation are highest for lateral ISMP values for the three drug treatments examined.
Figure 5: Close parallels between stereotypy scores and ISMP values occur despite different combinations of up- and downregulation of gene expression in the individual striosome and matrix compartments.
Figure 6: Correlations between averaged ISMP values and stereotypy values are high for each of the experimental treatments studied.

Similar content being viewed by others

References

  1. Ridley, R. M. The psychology of perseverative and stereotyped behaviour. Prog. Neurobiol. 44, 221–231 (1994).

    Article  CAS  Google Scholar 

  2. Manschreck, T. C. in Handbook of Schizophrenia Vol. 1. The Neurology of Schizophrenia (eds. Nasrallah, H. A. & Weinberger, D. R.) 65–96 (Elsevier, Amsterdam, 1986).

    Google Scholar 

  3. Antony, M. M., Downie, F. & Swinson, R. P. in Obsessive-compulsive Disorder: Theory, Research and Treatment (eds. Swinson, R. P., Antony, M. M., Rachman, S. & Richter, M. A.) 3–32 (Guildford, Oxford, 1988).

    Google Scholar 

  4. Randrup, A. & Munkvad, I. Influence of amphetamines on animal behaviour: stereotypy, functional impairment and possible animal-human correlations. Psychiatr. Neurol. Neurochir. 75, 193–202 (1972).

    CAS  PubMed  Google Scholar 

  5. Gold, L. H., Geyer, M. A. & Koob, G. F. Neurochemical mechanisms involved in behavioral effects of amphetamines and related designer drugs. NIDA Res. Monogr. 94, 101–126 (1989).

    CAS  PubMed  Google Scholar 

  6. Fog, R. On stereotypy and catalepsy: studies on the effect of amphetamines and neuroleptics in rats. Acta Neurol. Scand. Suppl. 50, 3–66 (1972).

    CAS  PubMed  Google Scholar 

  7. Costall, B. & Naylor, R. J. Dissociation of stereotyped biting responses and oro-bucco-lingual dyskinesias. Eur. J. Pharmacol. 36, 423–429 (1976).

    Article  CAS  Google Scholar 

  8. Creese, I. & Iversen, S. D. Amphetamine response in rat after dopamine neurone destruction. Nat. New Biol. 238, 247–248 (1972).

    Article  CAS  Google Scholar 

  9. Fibiger, H. C., Fibiger, H. P. & Zis, A. P. Attenuation of amphetamine-induced motor stimulation and stereotypy by 6-hydroxydopamine in the rat. Br. J. Pharmacol. 47, 683–692 (1973).

    Article  CAS  Google Scholar 

  10. Arnt, J. Antistereotypic effects of dopamine D-1 and D-2 antagonists after intrastriatal injection in rats. Pharmacological and regional specificity. Naunyn Schmiedebergs Arch. Pharmacol. 330, 97–104 (1985).

    Article  CAS  Google Scholar 

  11. Cummings, J. L. Anatomic and behavioral aspects of frontal-subcortical circuits. Ann. NY Acad. Sci. 769, 1–13 (1995).

    Article  CAS  Google Scholar 

  12. Rosenberg, D. R., Dick, E. L., O'Hearn, K. M. & Sweeney, J. A. Response-inhibition deficits in obsessive-compulsive disorder: an indicator of dysfunction in frontostriatal circuits. J. Psychiatry Neurosci. 22, 29–38 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Graybiel, A. M. The basal ganglia and cognitive pattern generators. Schizophr. Bull. 23, 459–469 (1997).

    Article  CAS  Google Scholar 

  14. Graybiel, A. M., Moratalla, R. & Robertson, H. A. Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl. Acad. Sci. USA 87, 6912–6916 (1990).

    Article  CAS  Google Scholar 

  15. Curran, T. & Morgan, J. I. Fos: an immediate-early transcription factor in neurons. J. Neurobiol. 26, 403–412 (1995).

    Article  CAS  Google Scholar 

  16. Sharp, F. R., Sagar, S. M. & Swanson, R. A. Metabolic mapping with cellular resolution: c-fos vs. 2–deoxyglucose. Crit. Rev. Neurobiol. 7, 205–228 (1993).

    CAS  PubMed  Google Scholar 

  17. Pierce, R. C. & Kalivas, P. W. A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Brain Res. Rev. 25, 192–216 (1997).

    Article  CAS  Google Scholar 

  18. Segal, D. S., Weinberger, S. B., Cahill, J. & McCunney, S. J. Multiple daily amphetamine administration: behavioral and neurochemical alterations. Science 207, 905–907 (1980).

    Article  CAS  Google Scholar 

  19. Hope, B. T. et al. Induction of long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13, 1235–1244 (1994).

    Article  CAS  Google Scholar 

  20. Rosen, J. B., Chuang, E. & Iadarola, M. J. Differential induction of Fos protein and a Fos-related antigen following acute and repeated cocaine administration. Mol. Brain Res. 25, 168–172 (1994).

    Article  CAS  Google Scholar 

  21. Moratalla, R., Elibol, B., Vallejo, M. & Graybiel, A. M. Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal. Neuron 17, 147–156 (1996).

    Article  CAS  Google Scholar 

  22. Scheel-Kruger, J. Behavioural and biochemical comparison of amphetamine derivatives, cocaine, benztropine and tricyclic anti-depressant drugs. Eur. J. Pharmacol. 18, 63–73 (1972).

    Article  CAS  Google Scholar 

  23. Bhat, R. V., Cole, A. J. & Baraban, J. M. Role of monoamine systems in activation of zif268 by cocaine. J. Psychiatry Neurosci. 17, 94–102 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramamoorthy, S. & Blakely, R. D. Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285, 763–766 (1999).

    Article  CAS  Google Scholar 

  25. Steiner, H. & Gerfen, C. R. Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp. Brain Res. 123, 60–76 (1998).

    Article  CAS  Google Scholar 

  26. Wang, J. Q., Daunais, J. B. & McGinty, J. F. NMDA receptors mediate amphetamine-induced upregulation of zif/268 and preprodynorphin mRNA expression in rat striatum. Synapse 18, 343–353 (1994).

    Article  CAS  Google Scholar 

  27. Aosaki, T., Kimura, M. & Graybiel, A. M. Temporal and spatial characteristics of tonically active neurons of the primate's striatum. J. Neurophysiol. 73, 1234–1252 (1995).

    Article  CAS  Google Scholar 

  28. Calabresi, P. et al. A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression. J. Neurosci. 19, 2489–2499 (1999).

    Article  CAS  Google Scholar 

  29. Wang, J. Q. & McGinty, J. F. Alterations in striatal zif/268, preprodynorphin and preproenkephalin mRNA expression induced by repeated amphetamine administration in rats. Brain Res. 673, 262–274 (1995).

    Article  CAS  Google Scholar 

  30. Konradi, C., Leveque, J.-C. & Hyman, S. E. Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium. J. Neurosci. 16, 4231–4239 (1996).

    Article  CAS  Google Scholar 

  31. Torres, G. & Rivier, C. Cocaine-induced expression of striatal c-fos in the rat is inhibited by NMDA receptor antagonists. Brain Res. Bull. 30, 173–176 (1993).

    Article  CAS  Google Scholar 

  32. Bito, H., Deisseroth, K. & Tsien, R. W. CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214 (1996).

    Article  CAS  Google Scholar 

  33. Liu, F.-C. & Graybiel, A. M. Spatiotemporal dynamics of CREB phosphorylation: Transient versus sustained phosphorylation in the developing striatum. Neuron 17, 1133–1144 (1996).

    Article  CAS  Google Scholar 

  34. Dragunow, M. A role for immediate-early transcription factors in learning and memory. Behav. Genet. 26, 293–299 (1996).

    Article  CAS  Google Scholar 

  35. Mello, C. V. & Clayton, D. F. Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system. J. Neurosci. 14, 6652–6666 (1994).

    Article  CAS  Google Scholar 

  36. Graybiel, A. M. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 13, 244–254 (1990).

    Article  CAS  Google Scholar 

  37. Gerfen, C. R. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15, 133–139 (1992).

    Article  CAS  Google Scholar 

  38. Volkow, N. D., Fowler, J. S., Wolf, A. P. & Gillespie, H. Metabolic studies of drugs of abuse. NIDA Res. Monogr. 105, 47–53 (1991).

    Google Scholar 

  39. Robbins, T. Stereotypies: addictions or fragmented actions? Bull. Br. Psychol. Soc. 35, 297–300 (1982).

    Google Scholar 

  40. Lyon, M. & Robbins, T. W. in Current Developments in Psychopharmacology (eds. Essmann, W. B. & Valzelli, L.) 80–163 (Spectrum, New York, 1975).

    Google Scholar 

  41. LaHoste, G. J. & Marshall, J. F. The role of dopamine in the maintenance and breakdown of D1/D2 synergism. Brain Res. 611, 108–116 (1993).

    Article  CAS  Google Scholar 

  42. Paul, M. L., Graybiel, A. M., David, J.-C. & Robertson, H. A. D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson's disease. J. Neurosci. 12, 3729–3742 (1992).

    Article  CAS  Google Scholar 

  43. Wirtshafter, D. & Asin, K. E. Interactive effects of stimulation of D1 and D2 dopamine receptors on fos-like immunoreactivity in the normosensitive rat striatum. Brain Res. Bull. 35, 85–91 (1994).

    Article  CAS  Google Scholar 

  44. Xu, M. et al. Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79, 945–955 (1994).

    Article  CAS  Google Scholar 

  45. Xu, M. et al. Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79, 729–742 (1994).

    Article  CAS  Google Scholar 

  46. Arnt, J. Antistereotypic effects of dopamine D-1 and D-2 antagonists after intrastriatal injection in rats. Pharmacological and regional specificity. Naunyn Schmiedebergs Arch. Pharmacol. 330, 97–104 (1985).

    Article  CAS  Google Scholar 

  47. Hiroi, N. & Graybiel, A. M. Atypical and typical neuroleptic treatments induce distinct programs of transcription factor expression in the striatum. J. Comp. Neurol. 374, 70–83 (1996).

    Article  CAS  Google Scholar 

  48. Hughes, P. & Dragunow, M. Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol. Rev. 47, 133–178 (1995).

    CAS  PubMed  Google Scholar 

  49. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  Google Scholar 

  50. Wichmann, T. & DeLong, M. R. Models of basal ganglia function and pathophysiology of movement disorders. Neurosurg. Clin. N. Am. 9

Download references

Acknowledgements

This work was funded by NIDA R01 DA08037, the National Parkinson Foundation, the Stanley Foundation and the Grayce B. Kerr Fund. We thank Patricia Harlan for technical assistance, Henry Hall for the photography, Joel Ventura and Paul Di Zio for advice on statistics and R. Bravo, R. P. Elde, M. Iadarola and S. Watson for their gifts of antisera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Graybiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canales, J., Graybiel, A. A measure of striatal function predicts motor stereotypy. Nat Neurosci 3, 377–383 (2000). https://doi.org/10.1038/73949

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing