Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Voluntary orienting is dissociated from target detection in human posterior parietal cortex

An Erratum to this article was published on 01 May 2000

Abstract

Human ability to attend to visual stimuli based on their spatial locations requires the parietal cortex. One hypothesis maintains that parietal cortex controls the voluntary orienting of attention toward a location of interest. Another hypothesis emphasizes its role in reorienting attention toward visual targets appearing at unattended locations. Here, using event-related functional magnetic resonance (ER-fMRI), we show that distinct parietal regions mediated these different attentional processes. Cortical activation occurred primarily in the intraparietal sulcus when a location was attended before visual-target presentation, but in the right temporoparietal junction when the target was detected, particularly at an unattended location.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Display, trial types and MR design.
Figure 2: BOLD responses during cue and target periods.
Figure 3: BOLD responses for valid and invalid targets.

Similar content being viewed by others

Notes

  1. Editorial Correction:

    The printed version of this article contained an error. Because of a technical problem, some of the numbers in Table 1 were printed in the wrong columns. The full-text web version of this table is now correct. We regret the error.

References

  1. Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 10, 309–315 (1981).

    Article  CAS  Google Scholar 

  2. Heilman, K. M., Watson, R. T. & Valenstein, E. in Clinical Neuropsychology (eds. Heilman, K. M. & Valenstein, E.) 243–293 (Oxford, New York, 1985).

    Google Scholar 

  3. Halligan, P. W. & Marshall, J. C. Toward a principled explanation of unilateral neglect. Special Issue: The cognitive neuropsychology of attention. Cognit. Neuropsychol. 11, 167–206 (1994).

    Article  Google Scholar 

  4. Posner, M. I., Walker, J. A., Friedrich, F. J. & Rafal, R. D. Effects of parietal injury on covert orienting of attention. J. Neurosci. 4, 1863–1874 ( 1984).

    Article  CAS  Google Scholar 

  5. Morrow, L. A. & Ratcliff, G. The disengagement of covert attention and the neglect syndrome. Psychobiology 16, 261–269 (1988).

    Google Scholar 

  6. Di Pellegrino, G. Clock-drawing in a case of left visuospatial neglect: a deficit of disengagement? Neuropsychologia 33, 353– 358 (1995).

    Article  CAS  Google Scholar 

  7. Friedrich, F. J., Egly, R., Rafal, R. D. & Beck, D. Spatial attention deficits in humans: a comparison of superior parietal and temporo-parietal junction lesions. Neuropsychology 12, 193 –207 (1998).

    Article  CAS  Google Scholar 

  8. Bushnell, M. C., Goldberg, M. E. & Robinson, D. L. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective attention. J. Neurophysiol. 46, 755– 772 (1981).

    Article  CAS  Google Scholar 

  9. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 ( 1996).

    Article  CAS  Google Scholar 

  10. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex . Nature 386, 167–170 (1997).

    Article  CAS  Google Scholar 

  11. Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature 391, 481– 484 (1998).

    Article  CAS  Google Scholar 

  12. Corbetta, M., Miezin, F. M., Shulman, G. L. & Petersen, S. E. A PET study of visuospatial attention. J. Neurosci. 13, 1202–1226 (1993).

    Article  CAS  Google Scholar 

  13. Nobre, A. C. et al. Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120, 515–533 (1997).

    Article  Google Scholar 

  14. Vandenberghe, R. et al. The influence of stimulus location on the brain activation pattern in detection and orientation discrimination-a PET study of visual attention. Brain 119, 1263– 1276 (1996).

    Article  Google Scholar 

  15. Gitelman, D. R. et al. Functional imaging of human right hemispheric activation for exploratory movements. Ann. Neurol. 39, 174–179 (1996).

    Article  CAS  Google Scholar 

  16. Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761– 773 (1998).

    Article  CAS  Google Scholar 

  17. Shulman, G. L. et al. Areas involved in encoding and applying directional expectations to moving objects. J. Neurosci. 19, 9480 –9496 (1999).

    Article  CAS  Google Scholar 

  18. Zarahn, E., Aguirre, G. & D'Esposito, M. A trial-based experimental design for fMRI. Neuroimage 6, 122–138 ( 1997).

    Article  CAS  Google Scholar 

  19. Friston, K. J., Josephs, O., Rees, G. & Turner, R. Nonlinear event-related responses in fMRI. Magn. Reson. Med. 39, 41–52 (1998).

    Article  CAS  Google Scholar 

  20. Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation . Neuron 22, 751–761 (1999).

    Article  CAS  Google Scholar 

  21. Chawla, D., Reese, G. & Friston, K. J. The physiological basis of attentional modulations in visual areas. Nat. Neurosci. 2, 671– 676 (1999).

    Article  CAS  Google Scholar 

  22. Dupont, P. et al. The kinetic occipital region in human visual cortex. Cereb. Cortex 7, 283–292 (1997).

    Article  CAS  Google Scholar 

  23. Mendola, J. D., Dale, A. M., Fischl, B., Liu, A. K. & Tootell, R. B. The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging . J. Neurosci. 19, 8560– 8572 (1999).

    Article  CAS  Google Scholar 

  24. Watson, J. D. et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex 3, 79–94 ( 1993).

    Article  CAS  Google Scholar 

  25. Tootell, R. B. H. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215–3230 (1995).

    Article  CAS  Google Scholar 

  26. Tootell, R. B. H. et al. The retinotopy of visual spatial attention. Neuron 21, 1409–1422 ( 1998).

    Article  CAS  Google Scholar 

  27. Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  CAS  Google Scholar 

  28. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193– 222 (1995).

    Article  CAS  Google Scholar 

  29. Le, T. H., Pardo, J. V. & Hu, X. 4T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. J. Neurophysiol. 79, 1535–1548 (1998).

    Article  CAS  Google Scholar 

  30. Lumer, E. D., Friston, K. J. & Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 280, 1930– 1934 (1998).

    Article  CAS  Google Scholar 

  31. Colby, C. L., Gattass, R., Olson, C. R. & Gross, C. G. Topographic organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J. Comp. Neurol. 238, 1257–1299 (1988).

    Google Scholar 

  32. Gnadt, J. W. & Andersen, R. A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220 ( 1988).

    CAS  Google Scholar 

  33. Culham, J. C. et al. Cortical fMRI activation produced by attentive tracking of moving targets. J. Neurophysiol. 80, 2657 –2670 (1998).

    Article  CAS  Google Scholar 

  34. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608– 611 (1997).

    Article  CAS  Google Scholar 

  35. Cohen, J. D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–607 (1997).

    Article  CAS  Google Scholar 

  36. Mesulam, M.-M Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28, 597 –613 (1990).

    Article  CAS  Google Scholar 

  37. Knight, R. T. & Scabini, D. Anatomic bases of event-related potentials and their relationship to novelty detection in humans. J. Clin. Neurophysiol. 15, 3–13 (1998).

    Article  CAS  Google Scholar 

  38. Pardo, J. V., Fox, P. T. & Raichle, M. E. Localization of a human system for sustained attention by positron emission tomography. Nature 349, 61–64 (1991).

    Article  CAS  Google Scholar 

  39. Foote, S. L. & Morrison, J. H. Extrathalamic modulation of cortical function. Annu. Rev. of Neurosci. 10, 67–96 (1987).

    Article  CAS  Google Scholar 

  40. Robertson, I. H., Mattingley, J. B., Rorden, C. & Driver, J. Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature 395, 169– 172 (1998).

    Article  CAS  Google Scholar 

  41. Parasuraman, R., Warm, J. S. & See, J. E. in The Attentive Brain (ed. Parasuraman, R.) 221–256 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  42. Weinberg, J. et al. Visual scanning training effects on reading-related tasks in acquired brain-damage. Arch. Phys. Med. Rehabil. 58, 479–486 (1977).

    CAS  PubMed  Google Scholar 

  43. Antonucci, G. et al. Effectiveness of neglect rehabilitation in a randomized group study. J. Clin. Exp. Neuropsychol. 17, 383 –389 (1995).

    Article  CAS  Google Scholar 

  44. Raczkowski, D., Kalat, J. W. & Nebes, R. Reliability and validity of some handedness questionnaire items. Neuropsychologia 12, 43– 47 (1974).

    Article  CAS  Google Scholar 

  45. Braver, T. S. et al. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5, 49– 62 (1997).

    Article  CAS  Google Scholar 

  46. Worsley, K. J. et al. A unified statistical approach for detemining significant signals in images of cerebral activation. Hum. Brain Mapp. 4, 58–73 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH EY00379 and EY12148 (M.C.). We thank Thomas Conturo, Avi Snyder and Erbil Akbudak for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Corbetta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corbetta, M., Kincade, J., Ollinger, J. et al. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3, 292–297 (2000). https://doi.org/10.1038/73009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing