Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Genealogies of mouse inbred strains

Abstract

The mouse is a prime organism of choice for modelling human disease. Over 450 inbred strains of mice have been described, providing a wealth of different genotypes and phenotypes for genetic and other studies. As new strains are generated and others become extinct, it is useful to review periodically what strains are available and how they are related to each other, particularly in the light of available DNA polymorphism data from microsatellite and other markers. We describe the origins and relationships of inbred mouse strains, 90 years after the generation of the first inbred strain. Given the large collection of inbred strains available, and that published information on these strains is incomplete, we propose that all genealogical and genetic data on inbred strains be submitted to a common electronic database to ensure this valuable information resource is preserved and used efficiently.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Keeler, C.E. The Laboratory Mouse, its Origin, Heredity, and Culture (Harvard University Press, Cambridge, 1931).

  2. Ginsburg, B.E. Muroid roots of behavior genetic research: a retrospective. in Techniques for the Genetic Analysis of Brain and Behavior (eds Goldowitz, D., Wahlsten, D. & Wimer, R.E.) 3–14(Elsevier, Amsterdam, 1992).

    Google Scholar 

  3. Morse, H.C. Origins of Inbred Mice (Academic, New York, 1978).

  4. Silver, L.M. Mouse Genetics (Oxford University Press, Oxford, 1995).

  5. Staats, J. Nomenclature. in Biology of the Laboratory Mouse (ed. Green, E.L.) 45–50 (McGraw-Hill, New York, 1966).

  6. Klein, J. Biology of the mouse histocompatibility-2 complex. in Principles of Immunogenetics Applied to a Single System (Springer-Verlag, Berlin, 1975).

  7. Davisson, M.T. Rules for nomenclature of inbred strains. in Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M.F., Rastan, S. & Brown, S.D.M.) 1532–1536 (Oxford University Press, Oxford, 1996).

    Google Scholar 

  8. Festing, M.F.W. Inbred strains of mice: a vital resource for biomedical research. Mouse Genome 95, 845–855 (1997).

    Google Scholar 

  9. Staats, J. The laboratory mouse. in Biology of the Laboratory Mouse (ed. Green, E.L.) 1–9 (McGraw-Hill, New York, 1966).

    Google Scholar 

  10. Takeda, T., Hosokawa, M. & Higuchi, K. Senescence-accelerated mouse (SAM); a novel murine model of senescence. Exp. Gerontol. 32, 105– 109 (1997).

    Article  CAS  Google Scholar 

  11. Peirce, J.L., Derr, R., Shendure, J., Kolata, T. & Silver, L.M. A major influence of sex-specific loci on alcohol preference in C57Bl/6 and DBA/2 inbred mice. Mamm. Genome 9, 942–948 (1998).

    Article  CAS  Google Scholar 

  12. Taketo, M. et al. FVB/N: an inbred mouse strain preferable for transgenic analyses . Proc. Natl Acad. Sci. USA 88, 2065– 2069 (1991).

    Article  CAS  Google Scholar 

  13. Crawley, J.N. et al.Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132, 107–124 (1997).

    Article  CAS  Google Scholar 

  14. Martin, J.E. & Fisher, E.M.C. Phenotypic analysis—making the most of your mouse. Trends Genet. 13, 254–256 (1997).

    Article  CAS  Google Scholar 

  15. Bonhomme, F. & Guenet, J.L. The laboratory mouse and its wild relatives. in Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M.F., Rastan, S. & Brown, S.D.M.) 1577– 1596 (Oxford University Press, Oxford, 1996).

    Google Scholar 

  16. Darvasi, A. Experimental strategies for the genetic dissection of complex traits in animal models. Nature Genet. 18, 19– 24 (1998).

    Article  CAS  Google Scholar 

  17. Todd, J.A. From genome to aetiology in a multifactorial disease, type 1 diabetes. Bioessays 21, 164–174 ( 1999).

    Article  CAS  Google Scholar 

  18. Talbot, C.J. et al. High-resolution mapping of quantitative trait loci in outbred mice . Nature Genet. 21, 305– 308 (1999).

    Article  CAS  Google Scholar 

  19. Potter, M. & Klein, J. in Inbred and Genetically Defined Strains of Laboratory Animals. Vol. 1, Mouse and Rat (eds Altman, P.L. & Katz, D.D.) 16–17 (Federation of American Societies for Experimental Biology, Bethesda, 1979).

    Google Scholar 

  20. Festing, M.F.W. Inbred Strains in Biomedical Research (Macmillan, London, 1979).

  21. Festing, M.F.W. & Roderick, T.H. Correlation between genetic distances based on single loci and on skeletal morphology in inbred mice. Genet. Res. 53, 45– 55 (1989).

    Article  CAS  Google Scholar 

  22. Hilgers, J. et al. Esterase alleles of inbred mouse strains maintained in the Netherlands . Genet. Res. 51, 29–40 (1988).

    Article  CAS  Google Scholar 

  23. Taylor, B.A. Genetic relationship between inbred strains of mice. J. Hered. 63, 83–86 ( 1972).

    Article  CAS  Google Scholar 

  24. Atchley, W.R. & Fitch, W. Gene trees and origins of inbred strains of mice. Science 254, 554– 558 (1991).

    Article  CAS  Google Scholar 

  25. Fowlis, G.A., Adelman, S., Knight, A.M. & Simpson, E. PCR-analyzed microsatellites of the mouse genome—additional polymorphisms among ten inbred mouse strains. Mamm. Genome 3, 192–196 (1992).

    Article  CAS  Google Scholar 

  26. Routman, E.J. & Cheverud, J.M. Polymorphism for PCR-analyzed microsatellites between the inbred mouse strains LG and SM. Mamm. Genome 6, 401–404 ( 1995).

    Article  CAS  Google Scholar 

  27. Matouk, C., Gosselin, D., Malo, D., Skamene, E. & Radzioch, D. PCR-analyzed microsatellites for the inbred mouse strain 129/Sv, the strain most commonly used in gene knockout technology. Mamm. Genome 7, 603–605 (1996).

    Article  CAS  Google Scholar 

  28. Slingsby, J.H., Hogarth, M.B., Simpson, E., Walport, M.J. & Morley, B.J. New microsatellite polymorphisms identified between C57BL/6, C57BL/10, and C57BL/KsJ inbred mouse strains. Immunogenetics 43, 72–75 (1996).

    CAS  PubMed  Google Scholar 

  29. Neuhaus, I.M., Sommardahl, C.S., Johnson, D.K. & Beier, D.R. Microsatellite DNA variants between the FVB/N and C3HeB/FeJLe and C57BL/6J mouse strains. Mamm. Genome 8, 506– 509 (1997).

    Article  CAS  Google Scholar 

  30. Panoutsakopoulou, V., et al. Microsatellite typing of CXB recombinant inbred and parental mouse strains. Mamm. Genome 8, 357– 361 (1997).

    Article  CAS  Google Scholar 

  31. Matin, A. et al. Simple sequence length polymorphisms (SSLPs) that distinguish MOLF/Ei and 129/Sv inbred strains of laboratory mice. Mamm. Genome 9, 668–670 (1998).

    Article  CAS  Google Scholar 

  32. Maronpot, R.R., Witschi, H.P., Smith, L.H. & McCoy, J.L. Recent experience with the strain A mouse pulmonary adenoma bioassay. Environ. Sci. Res. 27, 341–349 (1983).

    CAS  Google Scholar 

  33. Festing, M.F.W. A case for using inbred strains of laboratory animals in evaluating the safety of drugs. Food Cosmet. Toxicol. 13, 369– 375 (1975).

    Article  CAS  Google Scholar 

  34. Le Voyer, T.E. & Hunter, K.W. Microsatellite DNA variants among the FVB/NJ, C58/J and I/LnJ mouse strains. Mamm. Genome 10, 542–543 (1999).

    Article  CAS  Google Scholar 

  35. McClive, P.J., Huang, D. & Morahan, G. C57BL/6 and C57BL/10 inbred mouse strains differ at multiple loci on chromosome 4. Immunogenetics 39, 286–288 (1994).

    Article  CAS  Google Scholar 

  36. Atchley, W.R. & Fitch, W. Genetic affinities of inbred mouse strains of uncertain origin. Mol. Biol. Evol. 10, 1150–1169 (1993).

    CAS  PubMed  Google Scholar 

  37. Simpson, E.M. et al. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nature Genet. 16, 19 –27 (1997).

    Article  CAS  Google Scholar 

  38. Carlson, G.A. et al.Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time. Mol. Cell. Biol. 8, 5528–5540 (1988).

    Article  CAS  Google Scholar 

  39. Fitch, W.M. & Atchley, W.R. Evolution in inbred strains of mice appears to be rapid. Science 228, 1169 –1175 (1985).

    Article  CAS  Google Scholar 

  40. Atchley, W.R. & Fitch, W. Gene trees and origins of inbred strains of mice. Science 254, 554– 558 (1991).

    Article  CAS  Google Scholar 

  41. Cui, S., Chesson, C. & Hope, R. Genetic variation within and between strains of outbred Swiss mice. Lab. Anim. 27, 116– 123 (1993).

    Article  CAS  Google Scholar 

  42. Festing, M.F.W. Origins and characteristics of inbred strains of mice. in Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M.F., Rastan, S. & Brown, S.D.M.) 1537–1576 (Oxford University Press, Oxford, 1996).

    Google Scholar 

  43. Russell, E.S. A history of mouse genetics. Annu. Rev. Genet. 19, 1–28 (1985).

    Article  CAS  Google Scholar 

  44. Bonhomme, F., Guenet, J.L., Dod, B., Moriwaki, K. & Bulfield, G. The polyphyletic origin of laboratory inbred mice and their rate of evolution. J. Linnean Soc. 30, 51–58 (1987).

    Article  Google Scholar 

  45. Blake, J.A., Richardson, J.E., Davisson, M.T. & Eppig, J.T. The Mouse Genome Database (MGD): genetic and genomic information about the laboratory mouse. Nucleic Acids Res. 27, 95–98 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the mouse community who supplied information on inbred strains, particularly, J. Staats, P.W. Lane, E.M. Eicher, R. Elliot, J. Forejt, D. Juriloff, E. Leiter, C. Linder, T. Monique, K. Moore, L. Morel, O. Niwa, G. Raisman, D. Tabaczynski and G. Wolff. J.A.B., S.L. and M.H. are supported by the UK Medical Research Council; J.T.E. and M.L.-P. are supported by NIH grant HG00330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M.C. Fisher.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, J., Lloyd, S., Hafezparast, M. et al. Genealogies of mouse inbred strains. Nat Genet 24, 23–25 (2000). https://doi.org/10.1038/71641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71641

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing