Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity

Abstract

The secretion of synaptic and other vesicles is a complex process involving multiple steps. Many molecular components of the secretory apparatus have been identified, but how they relate to the different stages of vesicle release is not clear. We examined this issue in adrenal chromaffin cells, where capacitance measurements and amperometry allow us to measure vesicle fusion and hormone release simultaneously. Using flash photolysis of caged intracellular calcium to induce exocytosis, we observed three distinct kinetic components to vesicle fusion, of which only two are related to catecholamine release. Intracellular dialysis with botulinum neurotoxin E, D or C1 or tetanus-toxin light chains abolishes the catecholamine-related components, but leaves the third component untouched. Botulinum neurotoxin A, which removes nine amino acids from the carboxy(C)-terminal end of SNAP-25, does not eliminate catecholamine release completely, but slows down both catecholamine-related components. Thus we assign a dual role to SNAP-25 and suggest that its nine C-terminal amino acids are directly involved in coupling the calcium sensor to the final step in exocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple secretory components in response to different [Ca2+]i levels.
Figure 2: Kinetic analysis of multiple Cm components.
Figure 3: ATP dependence of secretion.
Figure 4: The effect of BoNT/E and BoNT/A on secretion.
Figure 5: The effect of BoNT/C1, BoNT/D and TeNT on secretion.
Figure 6: Secretion at high [Ca2+]i is sensitive to ATP but not to clostridial neurotoxins.
Figure 7: Hypothetical model for the kinetic steps leading to exocytosis.

Similar content being viewed by others

References

  1. Holz, R.W., Bittner, M.A., Peppers, S.C., Senter, R.A. & Eberhard, D.A. MgATP-independent and MgATP-dependent exocytosis. J. Biol. Chem. 264, 5412–5419 (1989).

    CAS  PubMed  Google Scholar 

  2. Parsons, T.D., Coorssen, J.R., Horstmann, H. & Almers, W. Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15, 1085–1096 ( 1995).

    Article  CAS  Google Scholar 

  3. Rosenmund, C. & Stevens, C.F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16 , 1197–1207 (1996).

    Article  CAS  Google Scholar 

  4. Neher, E. & Zucker, R.S. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10, 21–30 (1993).

    Article  CAS  Google Scholar 

  5. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 ( 1993).

    Article  Google Scholar 

  6. Südhof, T.C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653 ( 1995).

    Article  Google Scholar 

  7. Hanson, P.I. & Jahn, R. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523– 535 (1997).

    Article  CAS  Google Scholar 

  8. Foran, P., Lawrence, G. & Dolly, J.O. Blockade by botulinum neurotoxin B of catecholamine release from adrenochromaffin cells correlates with its cleavage of synaptobrevin and a homologue present on the granules. Biochemistry 34, 5494– 5503 (1995).

    Article  CAS  Google Scholar 

  9. Niemann, H., Blasi, J. & Jahn, R. Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol. 4, 179–185 (1994).

    Article  CAS  Google Scholar 

  10. Montecucco, C. & Schiavo, G. Mechanism of action of tetanus and botulinum neurotoxins. Mol. Microbiol. 13, 1–8 (1994).

    Article  CAS  Google Scholar 

  11. Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Niemann, H. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051 –5061 (1994).

    Article  CAS  Google Scholar 

  12. McMahon, H.T. et al. Tetanus and botulinum toxins type A and B inhibit glutamate, GABA, asparate and metenkephalin release from synaptosomes: clues to the locus of action . J. Biol. Chem. 267, 21338– 21343 (1992).

    CAS  PubMed  Google Scholar 

  13. Lawrence, G.W., Foran, P., Mohammed, N., DasGupta, B.R. & Dolly, J.O. Importance of two adjacent C-terminal sequences of SNAP-25 in exocytosis from intact and permeabilized chromaffin cells revealed by inhibition with Botulinum neurotoxins A and E. Biochemistry 36, 3061–3067 ( 1997).

    Article  CAS  Google Scholar 

  14. Dreyer, F., Rosenberg, F., Becker, C., Bigalke, H. & Penner, R. Differential effects of various secretagogues on quantal transmitter release from mouse motor nerve terminals treated with botulinum A and tetanus toxin. Naunyn-Schmiedebergs Arch. Pharmacol. 335, 1–7 (1987).

    Article  CAS  Google Scholar 

  15. Capogna, M., McKinney, R.A., O'Connor, V., Gähwiler, B.H. & Thompson, S.M. Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. J. Neurosci. 17, 7190–7202 (1997).

    Article  CAS  Google Scholar 

  16. Neher, E. & Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl Acad. Sci. USA 79, 6712 –6716 (1982).

    Article  CAS  Google Scholar 

  17. Gillis, K.D. in Single-Channel Recording 2nd edn. (eds. Sakmann, B. & Neher, E.) 155– 198 (Plenum, NewYork, 1995).

    Book  Google Scholar 

  18. Thomas, P., Wong, J.G., Lee, A.K. & Almers, W. A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs. Neuron 11, 93–104 (1993).

    Article  CAS  Google Scholar 

  19. Heinemann, C., Chow, R.H., Neher, E. & Zucker, R.S. Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys. J. 67, 2546–2557 (1994).

    Article  CAS  Google Scholar 

  20. Bittner, M.A. & Holz, R.W. Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J. Biol. Chem. 267, 16219–16225 (1992).

    CAS  PubMed  Google Scholar 

  21. Banerjee, A., Barry, V.A., DasGupta, B.R. & Martin, T.F.J. N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J. Biol. Chem. 271, 20223– 20226 (1996).

    Article  CAS  Google Scholar 

  22. Nichols, B.J., Ungermann, C., Pelham, H.R.B., Wickner, W.T. & Hass, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs . Nature 387, 199–202 (1997).

    Article  CAS  Google Scholar 

  23. Colombo, M.I., Taddese, M., Whiteheart, S.W. & Stahl, P.D. A possible predocking attachment site for N-ethylmaleimide-sensitive fusion protein. Insights from in vitro endosome fusion. J. Biol. Chem. 271, 18810–18816 (1996).

    Article  CAS  Google Scholar 

  24. Höhne-Zell, B. & Gratzl, M. Adrenal chromaffin cells contain functionally different SNAP-25 monomers and SNAP-25/syntaxin heterodimers. FEBS Lett. 394, 109–116 (1996).

    Article  Google Scholar 

  25. Otto, H., Hanson, P.I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl Acad. Sci. USA 94, 6197–6201 ( 1997).

    Article  CAS  Google Scholar 

  26. Hay, J.C. & Martin, T.F.J. Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion. Nature 366, 572– 580 (1993).

    Article  CAS  Google Scholar 

  27. Hay, J.C. et al. ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374, 173– 177 (1995).

    Article  CAS  Google Scholar 

  28. Martin, T.F.J. Stages of regulated exocytosis. Trends Cell Biol. 7, 271–276 (1997).

    Article  CAS  Google Scholar 

  29. Binz, T. et al. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J. Biol. Chem. 269, 1617–1620 (1994).

    CAS  PubMed  Google Scholar 

  30. Blasi, J. et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365, 160–163 ( 1993).

    Article  CAS  Google Scholar 

  31. Foran, P., Lawrence, G., Shone, C.C., Foster, K.A. & Dolly, J.O. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and chromaffin cells: Correlation with its blockade of catecholamine . Biochemistry 35, 2630– 2636 (1996).

    Article  CAS  Google Scholar 

  32. Blasi, J. et al. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 12, 4821– 4828 (1993).

    Article  CAS  Google Scholar 

  33. Plattner, H., Artalejo, A.R. & Neher, E. Ultrastructural organization of bovine chromaffin cell cortex--Analysis by cryofixation and morphometry of aspects pertinent to exocytosis. J. Cell Biol. 139, 1709–1717 (1997).

    Article  CAS  Google Scholar 

  34. Pusch, M. & Neher, E. Rates of diffusional exchange between small cells and a measuring patch pipette. Pflügers Arch. 411, 204–211 ( 1988).

    Article  CAS  Google Scholar 

  35. Poulain, B. et al. Differences in the multiple step process of inhibition by tetanus toxin and botulinum neurotoxins type A and B at aplysia synapses. Neuroscience 70, 567–576 ( 1996).

    Article  CAS  Google Scholar 

  36. Bittner, M.A. & Holz, R.W. Protein kinase C and clostridial neurotoxins affect discrete and related steps in the secretory pathway. Cell. Mol. Neurobiol. 13, 649–664 (1993).

    Article  CAS  Google Scholar 

  37. Ikonen, E., Tagaya, M., Ullrich, O., Montecucco, C. & Simons, K. Different requirements for NSF, SNAP, and rab proteins in apical and basolateral transport in MDCK cells. Cell 81, 571–580 (1995).

    Article  CAS  Google Scholar 

  38. Weimbs, T., Low, S.H., Chapin, S.J. & Mostov, K.E. Apical targeting in polarized epithelial cells: there's more afloat than rafts. Trends Cell Biol. 7, 393–399 (1997).

    Article  CAS  Google Scholar 

  39. von Rüden, L. & Neher, E. A Ca-dependent step in the release of catecholamines from adrenal chromaffin cells. Science 262, 1061–1065 (1993).

    Article  Google Scholar 

  40. Gillis, K.D., Mößner, R. & Neher, E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16, 1209–1220 ( 1996).

    Article  CAS  Google Scholar 

  41. Hanson, P.I., Heuser, J.E. & Jahn, R. Neurotransmitter release--four years of SNARE complexes. Curr. Opin. Neurobiol. 7, 310–315 (1997).

    Article  CAS  Google Scholar 

  42. Barnard, R.J.O., Morgan, A. & Burgoyne, R.D. Stimulation of NSF ATPase activity by alpha-SNAP is required for SNARE complex disassembly and exocytosis. J. Cell Biol. 139, 875–883 ( 1997).

    Article  CAS  Google Scholar 

  43. Moser, T. & Neher, E. Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices. J. Neurosci. 17, 2314–2323 (1997).

    Article  CAS  Google Scholar 

  44. Steyer, J.A., Horstmann, H. & Almers, W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388, 474– 478 (1997).

    Article  CAS  Google Scholar 

  45. Otto, H., Hanson, P.I., Chapman, E.R., Blasi, J. & Jahn, R. Poisoning by botulinum neurotoxin A does not inhibit formation or disassembly of the synaptosomal fusion complex. Biochem. Biophys. Res. Comm . 212, 945–952 ( 1995).

    Article  CAS  Google Scholar 

  46. Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Niemann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 14, 2317 –2325 (1995).

    Article  CAS  Google Scholar 

  47. Klingauf, J. & Neher, E. Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophys. J. 72, 674–690 (1997).

    Article  CAS  Google Scholar 

  48. Xu, T., Naraghi, M., Kang, H. & Neher, E. Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys. J. 73, 532– 545 (1997).

    Article  CAS  Google Scholar 

  49. Ellis-Davies, G.C. & Kaplan, J.H. Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc. Natl Acad. Sci. USA 91, 187–191 ( 1994).

    Article  CAS  Google Scholar 

  50. Grynkiewiez, G., Poenie, M. & Tsien. R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450 (1985).

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Ellis-Davies for samples of NP-EGTA, Drs. Corey Smith, Reinhard Jahn and Tobias Moser for feedback on the manuscript, and Frauke Friedlein and Michael Pilot for cell preparation. This work was supported by grants from the Deutsche Forschungsgemeinschaft (Nr. CHV-113/65/0) and from the European Community (Nr. CHRX-CT940500 ) to E.N. T.B. and H.N. were supported by the Fonds der chemischen Industrie and by the Deutsche Forschungsgemeinschaft (Nr. IIB2-Bi660/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, T., Binz, T., Niemann, H. et al. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat Neurosci 1, 192–200 (1998). https://doi.org/10.1038/642

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/642

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing