Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A small-systems approach to motor pattern generation

Abstract

How neuronal networks enable animals, humans included, to make coordinated movements is a continuing goal of neuroscience research. The stomatogastric nervous system of decapod crustaceans, which contains a set of distinct but interacting motor circuits, has contributed significantly to the general principles guiding our present understanding of how rhythmic motor circuits operate at the cellular level. This results from a detailed documentation of the circuit dynamics underlying motor pattern generation in this system as well as its modulation by individual transmitters and neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The gastric mill and pyloric circuits in the stomatogastric nervous system.
Figure 2: Illustrations of some of the membrane properties occurring in intracellularly recorded neurons (coloured circles) of central pattern generating circuits, including those in the STG.
Figure 3: Modulation of the pyloric and gastric mill rhythms in the STG.
Figure 4: Modulatory input can dismantle and reconfigure the STG circuits.
Figure 5: Convergence and divergence of transmitter actions.

Similar content being viewed by others

References

  1. Brown, T. G. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. 48, 18–46 (1914).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Marder, E. & Calabrese, R. L. Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996).

    CAS  Google Scholar 

  3. Stein, P. S. G., Grillner, S., Selverston, A. I. & Stuart, D. G. (eds) Neurons, Networks, and Motor Behavior (The MIT Press, Cambridge, MA, 1997).

    Google Scholar 

  4. Marder, E. & Bucher, D. Central pattern generators and the control of rhythmic movements. Curr. Biol. 11, R986–R996 (2001).

    CAS  Google Scholar 

  5. Pearson, K. G. Neural adaptation in the generation of rhythmic behavior. Annu. Rev. Physiol. 62, 723–753 (2000).

    CAS  Google Scholar 

  6. McCormick, D. A. & Bal, T. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215 (1997).

    CAS  Google Scholar 

  7. Harris-Warrick, R. M., Marder, E., Selverston, A. I. & Moulins, M. (eds) Dynamic Biological Networks. The Stomatogastric Nervous System (MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  8. Skiebe, P. Neuropeptides are ubiquitous chemical mediators: using the stomatogastric nervous system as a model system. J. Exp. Biol. 204, 2035–2048 (2001).

    CAS  Google Scholar 

  9. Turrigiano, G. G. & Heinzel, H.-G. in Dynamic Biological Networks: The Stomatogastric Nervous System (eds Harris-Warrick, R. M., Marder, E., Selverston, A. I. & Moulins, M.) 197–220 (MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  10. Clemens, S., Combes, D., Meyrand, P. & Simmers, J. Long-term expression of two interacting motor pattern-generating networks in the stomatogastric system of freely behaving lobster. J. Neurophysiol. 79, 1396–1408 (1998).

    CAS  Google Scholar 

  11. Nusbaum, M. P., Blitz, D. M., Swensen, A. M., Wood, D. & Marder, E. The roles of co-transmission in neural network modulation. Trends Neurosci. 24, 146–154 (2001).

    CAS  Google Scholar 

  12. Heinzel, H. G., Weimann, J. M. & Marder, E. The behavioral repertoire of the gastric mill in the crab, Cancer pagurus: an in situ endoscopic and electrophysiological examination. J. Neurosci. 13, 1793–1803 (1993).

    CAS  Google Scholar 

  13. Weimann, J. M. & Marder, E. Switching neurons are integral members of multiple oscillatory networks. Curr. Biol. 4, 896–902 (1994).

    CAS  Google Scholar 

  14. Miller, J. P. in The Crustacean Stomatogastric System (eds Selverston, A. I. & Moulins, M.) 109–136 (Springer, Berlin, 1987).

    Google Scholar 

  15. Harris-Warrick, R. M., Nagy, F. & Nusbaum, M. P. in Dynamic Biological Networks: The Stomatogastric Nervous System (eds Harris-Warrick, R. M., Marder, E., Selverston, A. I. & Moulins, M.) 87–138 (MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  16. Hartline, D. K. & Graubard, K. in Dynamic Biological Networks: The Stomatogastric Nervous System (eds Harris-Warrick, R. M., Marder, E., Selverston, A. I. & Moulins, M.) 31–86 (MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  17. Hooper, S. L. & Marder, E. Modulation of the lobster pyloric rhythm by the peptide proctolin. J. Neurosci. 7, 2097–2112 (1987).

    CAS  Google Scholar 

  18. Ayali, A. & Harris-Warrick, R. M. Monoamine control of the pacemaker kernel and cycle frequency in the lobster pyloric network. J. Neurosci. 19, 6712–6722 (1999).

    CAS  Google Scholar 

  19. Sharp, A. A., O'Neil, M. B., Abbott, L. F. & Marder, E. The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci. 16, 389–394 (1993).

    CAS  Google Scholar 

  20. Bartos, M., Manor, Y., Nadim, F., Marder, E. & Nusbaum, M. P. Coordination of fast and slow rhythmic neuronal circuits. J. Neurosci. 19, 6650–6660 (1999).

    CAS  Google Scholar 

  21. Swensen, A. M. & Marder, E. Modulators with convergent cellular actions elicit distinct circuit outputs. J. Neurosci. 21, 4050–4058 (2001).

    CAS  Google Scholar 

  22. Selverston, A. I., Kleindienst, H. U. & Huber, F. Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J. Neurosci. 5, 1283–1292 (1985).

    CAS  Google Scholar 

  23. Warzecha, A. K., Egelhaaf, M. & Borst, A. Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. J. Neurophysiol. 69, 329–339 (1993).

    CAS  Google Scholar 

  24. Kemenes, G. & Elliott, C. J. Analysis of the feeding motor pattern in the pond snail, Lymnaea stagnalis: photoinactivation of axonally stained pattern-generating interneurons. J. Neurosci. 14, 153–166 (1994).

    CAS  Google Scholar 

  25. Ulrich, D. & Huguenard, J. R. GABAA-receptor-mediated rebound burst firing and burst shunting in thalamus. J. Neurophysiol. 78, 1748–1751 (1997).

    CAS  Google Scholar 

  26. Jaeger, D. & Bower, J. Synaptic control of spiking in cerebellar Purkinje cells: dynamic current clamp based on model conductances. J. Neurosci. 19, 6090–6101 (1999).

    CAS  Google Scholar 

  27. Kiehn, O., Kjaerulff, O., Tresch, M. C. & Harris-Warrick, R. Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Res. 53, 649–659 (2000).

    CAS  Google Scholar 

  28. Elson, R. C. & Selverston, A. I. Mechanisms of gastric rhythm generation in the isolated stomatogastric ganglion of spiny lobsters: bursting pacemaker potentials, synaptic interactions, and muscarinic modulation. J. Neurophysiol. 68, 890–907 (1992).

    CAS  Google Scholar 

  29. Coleman, M. J. & Nusbaum, M. P. Functional consequences of compartmentalization of synaptic input. J. Neurosci. 14, 6544–6552 (1994).

    CAS  Google Scholar 

  30. Combes, D., Meyrand, P. & Simmers, J. Dynamic restructuring of a rhythmic motor program by a single mechanoreceptor neuron in lobster. J. Neurosci. 19, 3620–3628 (1999).

    CAS  Google Scholar 

  31. Koshiya, N. & Smith, J. C. Neuronal pacemaker for breathing visualized in vitro. Nature 400, 360–363 (1999).

    ADS  CAS  Google Scholar 

  32. Parker, D. & Grillner, S. Neuronal mechanisms of synaptic and network plasticity in the lamprey spinal cord. Prog. Brain Res. 125, 381–398 (2000).

    CAS  Google Scholar 

  33. Thoby-Brisson, M. & Ramirez, J. M. Role of inspiratory pacemaker neurons in mediating the hypoxic response of the respiratory network in vitro. J. Neurosci. 20, 5858–5866 (2000).

    CAS  Google Scholar 

  34. Katz, P. S. & Harris-Warrick, R. M. Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptive afferents. J. Neurosci. 10, 1495–1512 (1990).

    CAS  Google Scholar 

  35. Marder, E., Christie, A. E. & Kilman, V. L. Functional organization of cotransmission systems: lessons from small nervous systems. Invert. Neurosci. 1, 105–112 (1995).

    CAS  Google Scholar 

  36. Norris, B. J., Coleman, M. J. & Nusbaum, M. P. Pyloric motor pattern modification by a newly identified projection neuron in the crab stomatogastric nervous system. J. Neurophysiol. 75, 97–108 (1996).

    CAS  Google Scholar 

  37. Combes, D., Meyrand, P. & Simmers, J. Motor pattern specification by dual descending pathways to a lobster rhythm-generating network. J. Neurosci. 19, 3610–3619 (1999).

    CAS  Google Scholar 

  38. Morris, L. G., Thuma, J. B. & Hooper, S. L. Muscles express motor patterns of non-innervating neural networks by filtering broad-band input. Nature Neurosci. 3, 245–250 (2000).

    CAS  Google Scholar 

  39. Hooper, S. L. & Weaver, A. L. Motor neuron activity is often insufficient to predict motor response. Curr. Opin. Neurobiol. 10, 676–682 (2000).

    CAS  Google Scholar 

  40. Katz, P. S., Kirk, M. D. & Govind, C. K. Facilitation and depression at different branches of the same motor axon: evidence for presynaptic differences in release. J. Neurosci. 13, 3075–3089 (1993).

    CAS  Google Scholar 

  41. Jorge-Rivera, J. C., Sen, K., Birmingham, J. T., Abbott, L. F. & Marder, E. Temporal dynamics of convergent modulation at a crustacean neuromuscular junction. J. Neurophysiol. 80, 2559–2570 (1998).

    CAS  Google Scholar 

  42. Gutovitz, S., Birmingham, J. T., Luther, J. A., Simon, D. J. & Marder, E. GABA enhances transmission at an excitatory glutamatergic synapse. J. Neurosci. 21, 5935–5943 (2001).

    CAS  Google Scholar 

  43. Katz, P. S. & Tazaki, K. in Dynamic Biological Networks: The Stomatogastric Nervous System (eds Harris-Warrick, R. M., Marder, E., Selverston, A. I. & Moulins, M.) 221–262 (MIT Press, Cambridge, MA, 1992).

    Google Scholar 

  44. Katz, P. S. & Harris-Warrick, R. M. The evolution of neuronal circuits underlying species-specific behavior. Curr. Opin. Neurobiol. 9, 628–633 (1999).

    CAS  Google Scholar 

  45. Meyrand, P., Faumont, S., Simmers, J., Christie, A. E. & Nusbaum, M. P. Species-specific modulation of pattern-generating circuits. Eur. J. Neurosci. 12, 2585–2596 (2000).

    CAS  Google Scholar 

  46. Meyrand, P., Simmers, J. & Moulins, M. Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system. J. Neurosci. 14, 630–644 (1994).

    CAS  Google Scholar 

  47. Marder, E. & Hooper, S. L. in Model Neural Networks and Behavior (ed. Selverston, A. I.) 319–337 (Plenum, New York, 1985).

    Google Scholar 

  48. Tierney, A. J. & Harris-Warrick, R. M. Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. J. Neurophysiol. 67, 599–609 (1992).

    CAS  Google Scholar 

  49. Elson, R. C., Huerta, R., Abarbanel, H. D., Rabinovich, M. I. & Selverston, A. I. Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. J. Neurophysiol. 82, 115–122 (1999).

    CAS  Google Scholar 

  50. Hooper, S. L. Phase maintenance in the pyloric pattern of the lobster (Panulirus interruptus) stomatogastric ganglion. J. Comput. Neurosci. 4, 191–205 (1997).

    CAS  MATH  Google Scholar 

  51. Harris-Warrick, R. M. & Flamm, R. E. Multiple mechanisms of bursting in a conditional bursting neuron. J. Neurosci. 7, 2113–2128 (1987).

    CAS  Google Scholar 

  52. Baro, D. J. & Harris-Warrick, R. M. Differential expression and targeting of K+ channel genes in the lobster pyloric central pattern generator. Ann. NY Acad. Sci. 860, 281–295 (1998).

    ADS  CAS  Google Scholar 

  53. Baro, D. J. et al. Molecular underpinnings of motor pattern generation: differential targeting of shal and shaker in the pyloric motor system. J. Neurosci. 20, 6619–6630 (2000).

    CAS  Google Scholar 

  54. Kloppenburg, P., Zipfel, W. R., Webb, W. W. & Harris-Warrick, R. M. Highly localized Ca2+ accumulation revealed by multiphoton microscopy in an identified motoneuron and its modulation by dopamine. J. Neurosci. 20, 2523–2533 (2000).

    CAS  Google Scholar 

  55. Reyes, A. Influence of dendritic conductances on the input-output properties of neurons. Annu. Rev. Neurosci. 24, 653–675 (2001).

    CAS  Google Scholar 

  56. Harris-Warrick, R. M. et al. Distributed effects of dopamine modulation in the crustacean pyloric network. Ann. NY Acad. Sci. 860, 155–167 (1998).

    ADS  CAS  Google Scholar 

  57. Goldman, M. S., Golowasch, J., Marder, E. & Abbott, L. F. Global structure, robustness, and modulation of neuronal models. J. Neurosci. 21, 5229–5238 (2001).

    CAS  Google Scholar 

  58. Hooper, S. L. Transduction of temporal patterns by single neurons. Nature Neurosci. 1, 720–726 (1998).

    CAS  Google Scholar 

  59. Soto-Treviño, C., Thoroughman, K. A., Marder, E. & Abbott, L. F. Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks. Nature Neurosci. 4, 297–303 (2000).

    Google Scholar 

  60. Selverston, A. I. et al. Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators. J. Physiol. Paris 94, 357–374 (2000).

    CAS  Google Scholar 

  61. Marder, E. et al. Physiological insights from cellular and network models of the stomatogastric nervous systems of lobsters and crabs. Am. Zool. 33, 29–39 (1993).

    Google Scholar 

  62. Nadim, F., Manor, Y., Nusbaum, M. P. & Marder, E. Frequency regulation of a slow rhythm by a fast periodic input. J. Neurosci. 18, 5053–5067 (1998).

    CAS  Google Scholar 

  63. Edwards, D. H., Yeh, S. R. & Krasne, F. B. Neuronal coincidence detection by voltage-sensitive electrical synapses. Proc. Natl Acad. Sci. USA 95, 7145–7150 (1998).

    ADS  CAS  PubMed  Google Scholar 

  64. Perez-Velazquez, J. L. & Carlen, P. L. Gap junctions, synchrony and seizures. Trends Neurosci. 23, 68–74 (2000).

    CAS  Google Scholar 

  65. Galarreta, M. & Hestrin, S. Electrical synapses between GABA-releasing interneurons. Nature Rev. Neurosci. 2, 425–433 (2001).

    CAS  Google Scholar 

  66. Schmitz, D. et al. Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31, 831–840 (2001).

    CAS  Google Scholar 

  67. Marder, E. Roles for electrical coupling in neural circuits as revealed by selective neuronal deletions. J. Exp. Biol. 112, 147–167 (1984).

    CAS  Google Scholar 

  68. Kiehn, O. & Tresch, M. C. Gap junctions and motor behavior. Trends Neurosci. 25, 108–115 (2002).

    CAS  Google Scholar 

  69. Graubard, K. & Hartline, D. K. Full-wave rectification from a mixed electrical-chemical synapse. Science 237, 535–537 (1987).

    ADS  CAS  Google Scholar 

  70. Johnson, B. R., Peck, J. H. & Harris-Warrick, R. M. Differential modulation of chemical and electrical components of mixed synapses in the lobster stomatogastric ganglion. J. Comp. Physiol. A 175, 233–249 (1994).

    CAS  Google Scholar 

  71. Coleman, M. J., Meyrand, P. & Nusbaum, M. P. A switch between two modes of synaptic transmission mediated by presynaptic inhibition. Nature 378, 502–505 (1995).

    ADS  CAS  Google Scholar 

  72. Nadim, F. & Manor, Y. The role of short-term synaptic dynamics in motor control. Curr. Opin. Neurobiol. 10, 683–690 (2000).

    CAS  Google Scholar 

  73. Parker, D. & Grillner, S. Activity-dependent metaplasticity of inhibitory and excitatory synaptic transmission in the lamprey spinal cord locomotor network. J. Neurosci. 19, 1647–1656 (1999).

    CAS  Google Scholar 

  74. Manor, Y. & Nadim, F. Synaptic depression mediates bistability in neuronal networks with recurrent inhibitory connectivity. J. Neurosci. 21, 9460–9470 (2001).

    CAS  Google Scholar 

  75. Turrigiano, G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–217 (1999).

    CAS  Google Scholar 

  76. Turrigiano, G. G. & Nelson, S. B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 10, 358–364 (2000).

    CAS  Google Scholar 

  77. Turrigiano, G. G., LeMasson, G. & Marder, E. Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. J. Neurosci. 15, 3640–3652 (1995).

    CAS  Google Scholar 

  78. Mizrahi, A. et al. Long-term maintenance of channel distribution in a central pattern generator neuron by neuromodulatory inputs revealed by decentralization in organ culture. J. Neurosci. 21, 7331–7339 (2001).

    CAS  Google Scholar 

  79. Bartos, M. & Nusbaum, M. P. Intercircuit control of motor pattern modulation by presynaptic inhibition. J. Neurosci. 17, 2247–2256 (1997).

    CAS  Google Scholar 

  80. Kawahara, K., Kumagai, S., Nakazono, Y. & Myamoto, Y. Coupling between respiratory and stepping rhythms during locomotion in decerebrate cats. J. Appl. Physiol. 67, 110–115 (1989).

    CAS  Google Scholar 

  81. Larson, C. R., Yajima, Y. & Ko, P. Modification of activity of medullary respiratory-related neurons for vocalizing and swallowing. J. Neurophysiol. 71, 2294–2304 (1994).

    CAS  Google Scholar 

  82. Marder, E. & Meyrand, M. in Neuronal and Cellular Oscillators (ed. Jacklet, J.) 317–338 (Dekker, New York, 1989).

    Google Scholar 

  83. Meyrand, P., Simmers, J. & Moulins, M. Construction of a pattern-generating circuit with neurons of different networks. Nature 351, 60–63 (1991).

    ADS  CAS  Google Scholar 

  84. Hooper, S. L. & Moulins, M. Cellular and synaptic mechanisms responsible for a long-lasting restructuring of the lobster pyloric network. J. Neurophysiol. 64, 1574–1589 (1990).

    CAS  Google Scholar 

  85. Soffe, S. R. Two distinct rhythmic motor patterns are driven by common premotor and motor neurons in a simple vertebrate spinal cord. J. Neurosci. 13, 4456–4469 (1993).

    CAS  Google Scholar 

  86. Earhart, G. M. & Stein, P. S. G. Step, swim and scratch motor patterns in the turtle. J. Neurophysiol. 84, 2181–2190 (2000).

    CAS  Google Scholar 

  87. Lieske, S. P., Thoby-Brisson, M., Telgkamp, P. & Ramirez, J. M. Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nature Neurosci. 3, 600–607 (2000).

    CAS  Google Scholar 

  88. Dickinson, P. S., Mecsas, C. & Marder, E. Neuropeptide fusion of two motor-pattern generator circuits. Nature 344, 155–158 (1990).

    ADS  CAS  Google Scholar 

  89. Scholz, N. L., de Vente, J., Truman, J. W. & Graubard, K. Neural network partitioning by NO and cGMP. J. Neurosci. 21, 1610–1618 (2001).

    CAS  Google Scholar 

  90. Hemple, C. M., Vincent, P., Adams, S. R., Tsien, R. Y. & Selverston, A. I. Spatio-temporal dynamics of cyclic AMP signals in an intact neural circuit. Nature 384, 166–169 (1996).

    ADS  Google Scholar 

  91. Swensen, A. M. & Marder, E. Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. J. Neurosci. 20, 6752–6759 (2000).

    CAS  Google Scholar 

  92. Marder, E. & Calabrese, R. L. Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996).

    CAS  Google Scholar 

  93. Nagy, F. & Cardi, P. A rhythmic modulatory gating system in the stomatogastric nervous system of Homarus gammarus. II. Modulatory control of the pyloric CPG. J. Neurophysiol. 71, 2490–2502 (1994).

    CAS  Google Scholar 

  94. Perrins, R. & Weiss, K. R. Compartmentalization of information processing in an aplysia feeding circuit interneuron through membrane properties and synaptic interactions. J. Neurosci. 18, 3977–3989 (1998).

    CAS  Google Scholar 

  95. Wood, D. E., Stein, W. & Nusbaum, M. P. Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit. J. Neurosci. 20, 8943–8953 (2000).

    CAS  Google Scholar 

  96. Wood, D. E. & Nusbaum, M. P. Extracellular peptidase activity tunes motor pattern modulation. J. Neurosci. 22, 4185–4195 (2002).

    CAS  Google Scholar 

  97. Richards, K. S. & Marder, E. The actions of crustacean cardioactive peptide on adult and developing stomatogastric ganglion motor patterns. J. Neurobiol. 44, 31–44 (2000).

    CAS  Google Scholar 

  98. Le Feuvre, Y., Fenelon, V. S. & Meyrand, P. Ontogeny of modulatory inputs to motor networks: early established projection and progressive neurotransmitter acquisition. J. Neurosci. 21, 1313–1326 (2001).

    CAS  Google Scholar 

  99. O'Donovan, M. J. The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr. Opin. Neurobiol. 9, 94–104 (1999).

    CAS  Google Scholar 

  100. Wong, R. O. L. Retinal waves and visual system development. Annu. Rev. Neurosci. 22, 29–47 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Marder for his helpful discussions and R. Harris-Warrick for feedback on an earlier version of the manuscript. Research support in our laboratory is from National Institute of Neurological disorders and Stroke grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Nusbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nusbaum, M., Beenhakker, M. A small-systems approach to motor pattern generation. Nature 417, 343–350 (2002). https://doi.org/10.1038/417343a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/417343a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing