Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absence of opiate rewarding effects in mice lacking dopamine D2 receptors

Abstract

Dopamine receptors have been implicated in the behavioural response to drugs of abuse. These responses are mediated particularly by the mesolimbic dopaminergic pathway arising in the ventral tegmental area and projecting to the limbic system. The rewarding properties of opiates1 and the somatic expression of morphine abstinence2 have been related to changes in mesolimbic dopaminergic activity that could constitute the neural substrate for opioid addiction3. These adaptive responses to repeated morphine administration have been investigated in mice with a genetic disruption of the dopaminergic D2 receptors4. Although the behavioural expression of morphine withdrawal was unchanged in these mice, a total suppression of morphine rewarding properties was observed in a place-preference test. This effect is specific to the drug, as mice lacking D2 receptors behaved the same as wild-type mice when food is used as reward. We conclude that the D2 receptor plays a crucial role in the motivational component of drug addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: D2R-null mice preserve exploratory activity and locomotor response to morphine treatment.
Figure 2: Lack of morphine-induced place preference in D2R-null mice.
Figure 3: µ-Opioid receptor expression in D2R-null mice.
Figure 4: Analysis of morphine-induced physical dependence.

Similar content being viewed by others

References

  1. Wise, R. A. & Bozarth, M. A. Apsychomotor stimulant theory of addiction. Psychol. Rev. 97, 469–492 (1987).

    Article  Google Scholar 

  2. Harris, G. C. & Aston-Jones, G. Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature 371, 155–157 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Koob, G. F. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13, 177–184 (1992).

    Article  CAS  Google Scholar 

  4. Baik, J. H.et al. Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377, 424–428 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Wise, R. A. Neurobiology of addiction. Curr. Opin. Neurobiol. 6, 243–251 (1996).

    Article  CAS  Google Scholar 

  7. Bozarth, M. A. & Wise, R. A. Intracranial self-adminsitration of morphine into the ventral tegmental area in rats. Life Sci. 28, 551–555 (1981).

    Article  CAS  Google Scholar 

  8. Broekkamp, C. L., Phillips, A. S. & Cools, A. R. Facilitation of self-stimulation behavior following intracerebral microinjections of opioids into the ventral tegmental area. Pharmacol. Biochem. Behav. 11, 289–295 (1979).

    Article  CAS  Google Scholar 

  9. Phillips, A. C. & Le Piane, E. G. Reinforcing effects of morphine microinjection into the ventral tegmental area. Pharmacol. Biochem. Behav. 12, 965–968 (1980).

    Article  CAS  Google Scholar 

  10. Joyce, E. M. & Iversen, S. D. The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neurosci. Lett. 14, 207–212 (1979).

    Article  CAS  Google Scholar 

  11. Kalivas, P. W. & Richardson-Carlson, R. Endogenous enkephalin modulation of dopamine neurons in ventral tegmental area. Am. J. Physiol. 251, R243–R249 (1986).

    CAS  PubMed  Google Scholar 

  12. Ettenberg, A., Pettit, H. O., Bloom, F. E. & Koob, G. F. Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology 78, 204–209 (1982).

    Article  CAS  Google Scholar 

  13. Pettit, H. O., Ettenberg, A., Bloom, F. E. & Koob, G. F. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84, 167–173 (1984).

    Article  CAS  Google Scholar 

  14. Borg, P. J. & Taylor, D. A. Voluntary oral morphine self-administration in rats: effect of haloperidol or ondansetron. Pharmacol. Biochem. Behav. 47, 633–646 (1994).

    Article  CAS  Google Scholar 

  15. Maldonado, R., Stinus, L., Gold, L. & Koob, G. F. Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J. Pharmacol. Exp. Ther. 261, 669–677 (1992).

    CAS  PubMed  Google Scholar 

  16. Bozarth, M. A. Physical dependence produced by central morphine infusions: an anatomical mapping study. Neurosci. Biobehav. Rev. 18, 373–383 (1994).

    Article  CAS  Google Scholar 

  17. Longoni, R., Spina, L. & Di Chiara Dopaminergic D-1 receptors: essential role in morphine-induced hypermotility. Psychopharmacology 93, 401–402 (1987).

    Article  CAS  Google Scholar 

  18. Fournié-Zaluski, M. C.et al. “Mixed inhibitor-prodrug” as a new approach toward systemically active inhibitors of enkephalin-degrading enzymes. J. Med. Chem. 35, 2473–2481 (1992).

    Article  Google Scholar 

  19. Kalivas, P. W., Widerlow, E., Stanley, D., Breese, G. & Prange, A. J. Enkephalin action on the mesolimbic system: a dopamine-dependent and a dopamine-independent increase in locomotor activity. J. Pharmacol. Exp. Ther. 227, 229–237 (1983).

    CAS  PubMed  Google Scholar 

  20. Daugé, V., Rossignol, P. & Roques, B. P. Blockade of dopamine receptors reverses the behavioral effects of edogenous enkephalins in the nucleus caudatus but not in the nucleus accumbens: differential involvement of delta and mu opioid receptors. Psychopharmacology 99, 168–175 (1989).

    Article  Google Scholar 

  21. Valverde, O., Fournié-Zaluski, M. C., Roques, B. P. & Maldonado, R. The CCKBantagonist PD-134,308 facilitates rewarding effects of endogenous enkephalins but does not induce place preference in rats. Psychopharmacology 123, 119–126 (1995).

    Article  Google Scholar 

  22. Salamone, J. D. The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav. Brain. Res. 61, 117–133 (1994).

    Article  CAS  Google Scholar 

  23. Salamone, J. D. The behavioral neurochemistry of motivation: methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. J. Neurosci. Methods 64, 137–149 (1996).

    Article  CAS  Google Scholar 

  24. Matthes, H. W. D.et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the µ-opioid-receptor gene. Nature 383, 819–823 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Maldonado, R., Negus, S. & Koob, G. F. Precipitation of morphine withdrawal syndrome in rats by administraiton of mu-, delta- and kappa-selective opioid antagonists. Neuropharmacology 31, 1231–1241 (1992).

    Article  CAS  Google Scholar 

  26. Spyraki, C., Fibiger, H. C. & Phillips, A. G. Attenuation of heroin reward in rats by disruption of the mesolimbic dopamine system. Psychopharmacology 79, 278–283 (1983).

    Article  CAS  Google Scholar 

  27. Mackey, W. B. & van der Kooy, D. Neuroleptics block the positive reinforcing effects of amphetamine but not of morphine as measured by place conditioning. Pharmacol. Biochem. Behav. 22, 101–105 (1985).

    Article  CAS  Google Scholar 

  28. Stinus, L.et al. Chronic flupentixol treatment potentiates the reinforcing properties of systemic heroin administration. Biol. Psychiat. 26, 363–371 (1989).

    Article  CAS  Google Scholar 

  29. Smith, J. E., Guerin, G. F., Co, C., Barr, T. S. & Lane, J. D. Effects of 6-OHDA lesions of the central medial nucleus accumbens on rat intravenous morphine self-administration. Pharmacol. Biochem. Behav. 23, 843–849 (1985).

    Article  CAS  Google Scholar 

  30. Elmer, G. I., Pieper, J. O., Goldberg, S. R. & George F. R. Opioid operant self-administration, analgesi, stimulation and respiratory depression in µ-deficient mice. Psychopharmacology 117, analgesi23–31 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge B. Kieffer for the gift of µ-opioid cDNA. A.S. and O.V. were recipient of fellowships from the European Community and T.A.S. from the Centre Nationale de la Recherche Scientifique (CNRS). This work was supported by funds from the Ministère de la Recherche to R.M., from the Association pour la Recherche sur le Cancer to R.M. and to E.B., and from the Institut Nationale de la Santé et de la Recherche Médicale, CNRS et Centre Hospitalier Universitaire Regional to E.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliana Borrelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldonado, R., Saiardi, A., Valverde, O. et al. Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 388, 586–589 (1997). https://doi.org/10.1038/41567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41567

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing