Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation

A Corrigendum to this article was published on 20 June 2002

Abstract

Touch sensitivity in animals relies on nerve endings in the skin that convert mechanical force into electrical signals. In the nematode Caenorhabditis elegans, gentle touch to the body wall is sensed by six mechanosensory neurons1 that express two amiloride-sensitive Na+ channel proteins (DEG/ENaC). These proteins, MEC-4 and MEC-10, are required for touch sensation and can mutate to cause neuronal degeneration2,3. Here we show that these mutant or ā€˜dā€™ forms of MEC-4 and MEC-10 produce a constitutively active, amiloride-sensitive ionic current when co-expressed in Xenopus oocytes, but not on their own. MEC-2, a stomatin-related protein needed for touch sensitivity4, increased the activity of mutant channels about 40-fold and allowed currents to be detected with wild-type MEC-4 and MEC-10. Whereas neither the central, stomatin-like domain of MEC-2 nor human stomatin retained the activity of full-length MEC-2, both produced amiloride-sensitive currents with MEC-4d. Our findings indicate that MEC-2 regulates MEC-4/MEC-10 ion channels and raise the possibility that similar ion channels may be formed by stomatin-like proteins and DEG/ENaC proteins that are co-expressed in both vertebrates and invertebrates5,6,7,8. Some of these channels may mediate mechanosensory responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MEC-4d, MEC-10d, and MEC-2 produce amiloride-sensitive currents.
Figure 2: Functional interactions of MEC-4, MEC-10 and MEC-2.
Figure 3: MEC-2 interacts with MEC-4d and MEC-10d without altering surface expression.
Figure 4: Three domains are needed for full MEC-2 function.

Similar content being viewed by others

References

  1. Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82, 358ā€“370 (1981).

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588ā€“593 (1991).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  3. Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367, 467ā€“470 (1994).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  4. Huang, M., Gu, G., Ferguson, E. L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378, 292ā€“295 (1995).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  5. Fricke, B. et al. Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons. Cell Tissue Res. 299, 327ā€“334 (2000).

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Mannsfeldt, A. G., Carroll, P., Stucky, C. L. & Lewin, G. R. Stomatin, a MEC-2 like protein, is expressed by mammalian sensory neurons. Mol. Cell Neurosci. 13, 391ā€“404 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Tavernarakis, N., Shreffler, W., Wang, S. & Driscol, M. unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron 18, 107ā€“119 (1997).

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Sedensky, M. M., Siefker, J. M. & Morgan, P. G. Model organisms: new insights into ion channel and transporter function. Stomatin homologues interact in Caenorhabditis elegans. Am. J. Physiol. Cell Physiol. 280, C1340ā€“C1348 (2001).

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243, 1027ā€“1033 (1989).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  10. GarcĆ­a-AƱoveros, J., Garcia, J. A., Liu, J. D. & Corey, D. P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neurons 20, 1231ā€“1241 (1998).

    ArticleĀ  Google ScholarĀ 

  11. Adams, C. M. et al. Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol. 140, 143ā€“152 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I. & Lazdunski, M. The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J. Biol. Chem. 271, 10433ā€“10436 (1996).

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Canessa, C. M. et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367, 463ā€“467 (1994).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  14. Rajaram, S., Spangler, T. L., Sedensky, M. M. & Morgan, P. G. A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans. Genetics 153, 1673ā€“1682 (1999).

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Palmer, L. G. Interactions of amiloride and other blocking cations with the apical Na channel in the toad urinary bladder. J. Membr. Biol. 87, 191ā€“199 (1985).

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. McNicholas, C. M. & Canessa, C. M. Diversity of channels generated by different combinations of epithelial sodium channel subunits. J. Gen. Physiol. 109, 681ā€“692 (1997).

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Gu, G., Caldwell, G. A. & Chalfie, M. Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 6577ā€“6582 (1996).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  18. Muller, A. H., Gawantka, V., Ding, X. & Hausen, P. Maturation induced internalization of beta 1-integrin by Xenopus oocytes and formation of the maternal integrin pool. Mech. Dev. 42, 77ā€“88 (1993).

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Lande, W. M., Thiemann, P. V. & Mentzer, W. C. Jr Missing band 7 membrane protein in two patients with high Na, low K erythrocytes. J. Clin. Invest. 70, 1273ā€“1280 (1982).

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Huang, M. Mechanosensory genes in Caenorhabditis elegans. PhD thesis, Columbia Univ. (1995).

  21. Snyers, L., Umlauf, E. & Prohaska, R. Oligomeric nature of the integral membrane protein stomatin. J.Ā Biol. Chem. 273, 17221ā€“17226 (1998).

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Snyers, L., Umlaug, E. & Prohaska, R. Cysteine 29 is the major palmitoylation site on stomatin. FEBS Lett. 449, 101ā€“104 (1999).

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Salzer, U. & Prohaska, R. Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood 97, 1141ā€“1143 (2001).

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. GarcĆ­a-AƱoveros, J., Samad, T. A., Woolf, C. J. & Corey, D. P. Transport and localization of the DEG/ENaC ion channel BNaCl Ī± to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci. 21, 2678ā€“2686 (2001).

    ArticleĀ  Google ScholarĀ 

  25. Price, M. P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007ā€“1011 (2000).

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  26. Lai, C. C., Hong, K., Kinnell, M., Chalfie, M. & Driscoll, M. Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans. J. Cell Biol. 133, 1071ā€“1081 (1996).

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Kleckner, N., Bender, J. & Gottesman, S. Uses of transposons with emphasis on Tn10. Methods Enzymol. 204, 139ā€“180 (1991).

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Hille, B. Ion Channels of Excitable Membranes. (Sinauer, Sunderland, Massachussetts, 2001).

    Google ScholarĀ 

  29. Chillaron, J. et al. An intracellular trafficking defect in type I cystinuria rBAT mutants M467T and M467K. J. Biol. Chem. 272, 9543ā€“9549 (1997).

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Woodhull, A. M. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61, 687ā€“708 (1973).

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank S. Zhang for polyclonal anti-MEC-2(145ā€“481); M. Driscoll for wild-type degenerin cDNAs; G. Stewart for hStomatin cDNA; S. Hollman for pSGEM (a derivative of pGEM-HE); the Developmental Studies Hybridoma Bank for monoclonal antibodies against Xenopus Ī²-integrin; J. Art, S. Firestein and J. Yang for the loan of equipment. We also thank L. Chen for technical assistance and T. Lu and J. Yang for assistance with preliminary experiments. This work was supported by a research grant from the National Institute of General Medical Sciences, NIH (M.C.), a Human Frontiers Science Program postdoctoral fellowship (D.S.C.), and an NRSA postdoctoral fellowship from the National Institute of Deafness and Other Communication Disorders, NIH (M.B.G.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Chalfie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, M., Ernstrom, G., Chelur, D. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415, 1039ā€“1042 (2002). https://doi.org/10.1038/4151039a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4151039a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing