Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Progress in determining the causes and treatment of multiple sclerosis

Abstract

The cause of multiple sclerosis remains unknown after more than a century of study. Unconfirmed work has once more indicated that a viral infection may be important in the aetiology of the disease, and there is considerable evidence for an important genetic influence on disease susceptibility. The clinical course is as variable as that of any disease in medicine. Studies using serial magnetic resonance imaging have helped to define the disease course and response to experimental therapies. Although the predominant pathological characteristic is myelin loss with preservation of axons, some studies recall classic descriptions that irreversible axonal destruction may occur, perhaps even in the early stages of the illness. There are now several, partially effective therapies for relapsing forms of multiple sclerosis and here I review progress in determining the timing and course of the illness and the steps that need to be taken to identify more effective treatments for this disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the factors that may contribute to the presumed immune-mediated injury in the MS lesion.
Figure 2: Oligodendrocyte preservation and loss in MS. a, Oligodendrocyte preservation.

References

  1. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 112, 133–146 (1989).

    Article  PubMed  Google Scholar 

  3. Weinshenker, B. & Miller, D. in Frontiers in Multiple Sclerosis (eds Siva, A., Kesselring, J. & Thompson, A.) (Dunitz, London, 1998).

    Google Scholar 

  4. Hohlfeld, R. Biotechnological agents for the immunotherapy of multiple sclerosis, principles, problems and perspectives. Brain 120, 865–916 (1997).

    Article  PubMed  Google Scholar 

  5. Noseworthy, J. MS clinical trials: old and new challenges. Semin. Neurol. 18, 377–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Cook, S., Rohowsky-Kochan, C., Bansil, S. & Dowling, P. Evidence for multiple sclerosis as an infectious disease. Acta Neurol. Scand. 161, 34–42 (1996).

    Google Scholar 

  7. Kurtzke, J. F. Epidemiologic evidence for multiple sclerosis as an infection. Clin. Microbiol. Rev. 6, 382–427 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ebers, G. C. et al. A population-based study of multiple sclerosis in twins. N. Engl. J. Med. 315, 1638–1642 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Sibley, W. A., Bamford, C. R. & Clark, K. Clinical viral infections and multiple sclerosis. Lancet 1, 1313–1315 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Herndon, R. Herpesviruses in multiple sclerosis. Arch. Neurol. 53, 123–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Challoner, P. et al. Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc. Natl Acad. Sci. USA 92, 7440–7444 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liedtke, W., Malessa, R., Faustmann, P. & Eis-Hubinger, A. Human herpesvirus 6 polymerase chain reaction findings in human immunodeficiency virus associated neurological disease and multiple sclerosis. J. Neurovirol. 1, 253–258 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Soldan, S. et al. Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nature Med. 3, 1394–1397 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Merelli, E. et al. Human herpes virus 6 and human herpes virus 8 DNA sequences in brains of multiple sclerosis patients, normal adults, and children. J. Neurol. 244, 450–454 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Steinman, L. & Oldstone, M. More mayhem from molecular mimics. Nature Med. 3, 1321–1322 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Sanders, V. et al. Herpes simplex virus in postmortem multiple sclerosis brain tissue. Arch. Neurol. 53, 125–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Sanders, V., Felisan, S., Waddell, A. & Tourtellotte, W. Detection of herpesviridae in postmortem multiple sclerosis brain tissue and controls by polymerase chain reaction. J. Neurovirol. 2, 249–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Mayne, M. et al. Infrequent detection of human herpesvirus 6 DNA in peripheral blood mononuclear cells from multiple sclerosis patients. Ann. Neurol. 44, 391–394 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. van Noort, J. et al. The small heat-shock protein αβ-crystallin as candidate autoantigen in multiple sclerosis. Nature 375, 798–801 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Compston, A. Genetic epidemiology of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 62, 553–561 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sadovnick, A., Dyment, D. & Ebers, G. Genetic epidemiology of multiple sclerosis. Epidemiol. Rev. 19, 99–106 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Bulman, D. & Ebers, G. The geography of multiple sclerosis reflects genetic susceptibility. J. Trop. Geogr. Neurol. 2, 66–72 (1992).

    Google Scholar 

  24. Dyment, D., Sadovnick, A. & Ebers, G. Genetics of multiple sclerosis. Hum. Mol. Genet. 6, 1693–1698 (1997). [Published erratum appears in Hum. Mol. Genet. 6,, 2189 (1997).]

    Article  CAS  PubMed  Google Scholar 

  25. Little, C. A possible Mendelian explanation for a type of inheritance apparently non-Mendelian in nature. Science 40, 904–906 (1917).

    Article  ADS  Google Scholar 

  26. Sadovnick, A., Ebers, G., Dyment, D., Risch, N. and the Canadian Collaborative Study Group. Evidence for genetic basis of multiple sclerosis. Lancet 347, 1728–1730 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Ebers, G., Sadovnick, A., Risch, N. and the Canadian Collaborative Study Group. A genetic basis for familial aggregation in multiple sclerosis. Nature 377, 150–151 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Waksman, B. More genes versus environment. Nature 377, 105–106 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farrall, M. Mapping genetic susceptibility to multiple sclerosis. Lancet 348, 1674–1675 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Sawcer, S., Goodfellow, P. & Compston, A. The genetic analysis of multiple sclerosis. Trends Genet. 13, 234–239 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, H., Zhao, H. & Merikangas, K. Strategies to identify genes for complex diseases. Ann. Med. 29, 493–498 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Risch, N. Assessing the role of HLA-linked and unlinked determinants of disease. Am. J. Hum. Genet. 40, 1–14 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Haines, J. et al. Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. Hum. Mol. Genet. 7, 1229–1234 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Sawcer, S. et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genet. 13, 464–468 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Haines, J. et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. Nature Genet. 13, 469–471 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Ebers, G. et al. A full genome search in multiple sclerosis. Nature Genet. 13, 472–476 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Bell, J. & Lathrop, G. Multiple loci for multiple sclerosis. Nature Genet. 13, 377–378 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Kuokkanen, S. et al. A putative vulnerability locus to multiple sclerosis maps to 5p14-p12 in a region syntenic to the murine locus Eae2. Nature Genet. 13, 477–480 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Kuokkanen, S. et al. Genomewide scan of multiple sclerosis in Finnish multiplex families. Am. J. Hum. Genet. 61, 1379–1387 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lucchinetti, C. F., Bruck, W., Rodriguez, M. & Lassmann, H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol. 6, 259–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Storch, M. K. et al. Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Ann. Neurol. 43, 465–471 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Compston, A. Remyelination in multiple sclerosis: a challenge for therapy. The 1996 European Charcot Foundation Lecture. Mult. Scler. 3, 51–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Trapp, B. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Wolinsky, J. S., Narayana, P. A. & Fenstermacher, M. J. Proton magnetic resonance spectroscopy in multiple sclerosis. Neurology 40, 1764–1769 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Arnold, D. L., Matthews, P. M., Francis, G. & Antel, J. Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn. Reson. Med. 14, 154–159 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Arnold, D. L., Matthews, P. M., Francis, G. S., O' Connor, J. & Antel, J. P. Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann. Neurol. 31, 235–241 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Davie, C. et al. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117, 49–58 (1994).

    Article  PubMed  Google Scholar 

  48. Matthews, P. et al. Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis. Semin. Neurol. 18, 327–336 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Losseff, N. et al. Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119, 2009–2019 (1996).

    Article  PubMed  Google Scholar 

  50. Losseff, N. et al. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119, 701–708 (1996).

    Article  PubMed  Google Scholar 

  51. Waxman, S. Demyelinating diseases — new pathological insights, new therapeutic targets. N. Engl. J. Med. 338, 323–325 (1998).

    CAS  PubMed  Google Scholar 

  52. Bunge, M. B., Bunge, R. P. & Ris, H. Ultrastructural study of remyelination in an experimental lesion in the adult cat spinal cord. J. Biophys. Biochem. Cytol. 10, 67–94 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prineas, J. W., Barnard, R. O., Kwon, E. E., Sharer, L. R. & Cho, E.-S. Multiple sclerosis: remyelination of nascent lesions. Ann. Neurol. 33, 137–151 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Zajicek, J. & Compston, A. Mechanisms of damage and repair in multiple sclerosis — a review. Mult. Scler. 1, 61–72 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Compston, A. Future options for therapies to limit damage and enhance recovery. Semin. Neurol. 18, 405–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Scolding, N. et al. A proliferative adult human oligodendrocyte progenitor. NeuroReport 6, 441–445 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Rodriguez, M. & Lennon, V. A. Immunoglobulins promote remyelination in the central nervous system. Ann. Neurol. 27, 12–17 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Noseworthy, J., O'Brien, P., van Engelen, B. & Rodriguez, M. Intravenous immunoglobulin therapy in multiple sclerosis: progress from the Theiler's virus model to a randomized, double-blinded, placebo-controlled clinical trial. J. Neurol. Neurosurg. Psychiatry 57(Suppl.), 11–14 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Noseworthy, J., Weinshenker, B. & O'Brien, P. Intravenous immunoglobulin (IVIg) does not reverse recently acquired, apparently permanent weakness in multiple sclerosis (MS). Ann. Neurol. 42, A421 (1997).

    Google Scholar 

  60. Noseworthy, J. et al. Immunoglobulin administration (IVIg) does not reverse visual acuity loss in long-standing optic neuritis associated with multiple sclerosis. Ann. Neurol. 44, A504 (1998).

    Google Scholar 

  61. Bostock, H. & Sears, T. The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J. Physiol. (Lond.) 280, 273–301 (1978).

    Article  CAS  PubMed Central  Google Scholar 

  62. Waxman, S. in Brain Plasticity, Advances in Neurology (eds Freund, H. J., Sabel, B. A. & Witte, O. W.) 109–120 (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  63. Rivera-Quinones, C. et al. Absence of neurological deficits following extensive demyelination in a class 1-deficient murine model of multiple sclerosis. Nature Med. 4, 187–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Ludwin, S. & Johnson, E. Evidence of a “dying back” gliopathy in demyelinating disease. Ann. Neurol. 9, 301–305 (1981).

    Article  CAS  PubMed  Google Scholar 

  65. Rodriguez, M. Virus-induced demyelination in mice: “dying back” of oligodendrocytes. Mayo Clin. Proc. 60, 433–438 (1985).

    Article  CAS  PubMed  Google Scholar 

  66. Ferguson, B., Matyszak, M., Esiri, M. & Petty, V. Axonal damage in acute multiple sclerosis lesions. Brain 120, 393–399 (1997).

    Article  PubMed  Google Scholar 

  67. Miller, D., Grossman, R., Reingold, S. & McFarland, H. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 121, 3–24 (1998).

    Article  PubMed  Google Scholar 

  68. van Walderveen, M. A. A. et al. Correlating MR imaging and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short TR/TE (“T1-weighted”) spin-echo images. Neurology 45, 1684–1690 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Gass, A. et al. Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann. Neurol. 36, 62–67 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Kidd, D. et al. MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 60, 15–19 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miller, D. Multiple sclerosis: use of MRI in evaluating new therapies. Semin. Neurol. 18, 317–325 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. De Stefano, N. et al. Axonal damage correlated with disability in patients with relapsing-remitting multiple sclerosis: results of a longitudinal magnetic resonance spectroscopy study. Brain 121, 1469–1477 (1998).

    Article  PubMed  Google Scholar 

  73. Filippi, M., Rocca, M., Martino, G., Horsfield, M. & Comi, G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann. Neurol. 43, 809–814 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Goodkin, D. et al. A serial study of new MS lesions and the white matter from which they arise. Neurology 51, 1689–1697 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Kidd, D. et al. Central motor conduction time in progressive multiple sclerosis: correlations with MRI and disease activity. Brain 121, 1109–1116 (1998).

    Article  PubMed  Google Scholar 

  76. Noseworthy, J. H., Vandervoort, M. K., Hopkins, M. & Ebers, G. C. A referendum on clinical trial research in multiple sclerosis: the opinion of the participants at the Jekyll Island workshop. Neurology 39, 977–981 (1989).

    Article  CAS  PubMed  Google Scholar 

  77. Noseworthy, J. H., Vandervoort, M. K., Wong, C. J. & Ebers, G. C. Interrater variability with the Expanded Disability Status Scale (EDSS) and Functional Systems (FS) in a multiple sclerosis clinical trial. The Canadian Cooperation MS Study Group. Neurology 40, 971–975 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. Noseworthy, J. H. et al. The impact of blinding on the results of a randomized, placebo-controlled multiple sclerosis clinical trial. Neurology 44, 16–20 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Petkau, J. Statistical methods for evaluating multiple sclerosis therapies. Semin. Neurol. 18, 351–375 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Stone, L. et al. Characterization of MRI response to treatment with interferon beta-1b: contrastenhancing MRI lesion frequency as a primary outcome measure. Neurology 49, 862–869 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Calabresi, P., Stone, L., Bash, C., Frank, J. & McFarland, H. Interferon beta results in immediate reduction of contrast-enhanced MRI lesions in multiple sclerosis patients followed by weekly MRI. Neurology 48, 1446–1448 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Paty, D. W., Li, D. K. B., the UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43, 662–667 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. The IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. Interferon b-1b in the treatment of MS: final outcome of the randomized controlled trial. Neurology 45, 1277–1285 (1995).

  84. Simon, J. et al. Magnetic resonance studies of intramuscular interferon b-1a for relapsing multiple sclerosis. Neurology 43, 79–87 (1998).

    CAS  Google Scholar 

  85. PRISMS (Prevention of relapses and disability by interferon beta-1a subcutaneously in multiple sclerosis) Study Group. Randomised double-blind, placebo-controlled study of interferon beta-1a in relapsing-remitting multiple sclerosis. Lancet 352, 1498–1504 (1998).

  86. Kappos, L. and the European Study Group on Interferon beta-1b in secondary-progressive MS. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. Lancet 352, 1491–1497 (1998).

    Article  CAS  Google Scholar 

  87. The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43, 655–661 (1993).

  88. Jacobs, L. D. et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann. Neurol. 39, 285–294 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Rudick, R. et al. Impact of interferon beta-1a on neurologic disability in relapsing multiple sclerosis. Neurology 49, 358–363 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45, 1268–1276 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Johnson, K. et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Neurology 50, 701–708 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Fazekas, F., Deisenhammer, F., Strasser-Fuchs, S., Nahler, G., Mamoli, B. and the Austrian Immunoglobulin in MS Study Group. Randomised placebo-controlled trial of monthly intravenous immunoglobulin therapy in relapsing-remitting multiple sclerosis. Lancet 349, 589–593 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Achiron, A. et al. Intravenous immunoglobulin treatment in multiple sclerosis: effect on relapses. Neurology 50, 398–402 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Sorensen, P. et al. Intravenous immunoglobulin G reduces MRI activity in relapsing multiple sclerosis. Neurology 50, 1273–1281 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. van den Noort, S. et al. National MS Society (NMSS): Disease Management Consensus Statement (National MS Society, New York, 1998).

    Google Scholar 

  96. Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. II. Predictive value of the early clinical course. Brain 112, 1419–1428 (1989).

    Article  PubMed  Google Scholar 

  97. Noseworthy, J. in A Problem-oriented Approach to Management and Treatment of Multiple Sclerosis. (eds Thompson, A., Polman, C. & Hohlfeld, R.) 177–193 (Dunitz, London, 1997).

    Google Scholar 

  98. Noseworthy, J., O'Brien, P. and the Mayo Clinic-Canadian Cooperative MS Study Group. The Mayo Clinic Canadian Cooperative Trial of Sulfasalazine in active multiple sclerosis. Neurology 51, 1342–1352 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. van Noort, J. Multiple sclerosis: an altered immune response or an altered stress response? J. Mol. Med. 74, 285–296 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Murray, P. et al. Perforin-dependent neurologic injury in a viral model of multiple sclerosis. J. Neurosci. 18, 7306–7314 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank G. Ebers, B. Weinshenker, C. Lucchinetti, E. Benarroch and M. Rodriguez for critical comments, and the National Institutes of Health and the National Multiple Sclerosis Society for supporting my work in this area. L. Irlbeck assisted with the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noseworthy, J. Progress in determining the causes and treatment of multiple sclerosis. Nature 399, A40–A47 (1999). https://doi.org/10.1038/399a040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/399a040

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing