Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of magnetic field intensity by sea turtles

Abstract

WHETHER migratory animals can determine their global position by detecting features of the Earth's magnetic field has long been debated1–4. To do this an animal must perceive (at least) two distinct magnetic parameters, each of which must vary in a different direction across the Earth's surface3,5. There has been no evidence that any animal can perceive two such magnetic features, and whether 'magnetic maps' exist at all has remained controversial2–6. Several populations of sea turtles7–9 undergo transoceanic migrations before returning to nest on or near the same beaches where they themselves hatched. Along the migratory routes, all or most locations have unique combinations of magnetic field intensity and field line inclination. It has been demonstrated that hatchling loggerhead turtles can distinguish between different magnetic inclination angles10. Here we report that turtles can also distinguish between different field intensities found along their migratory route. Thus sea turtles possess the minimal sensory abilities necessary to approximate global position using a bicoordinate magnetic map.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Viguier, C. Rev. Philos. France Etranger 14, 1–36 (1882).

    Google Scholar 

  2. Gould, J. L. in Magnetite Biomineralization and Magnetoreception in Organisms (eds Kirschvink, J. L, Jones, D. A. & McFadden, B. J.) 257–268 (Plenum, New York, 1985).

    Book  Google Scholar 

  3. Baker, R. R. Bird Navigation: the Solution of a Mystery? (Holmes and Meier, New York, 1984).

    Google Scholar 

  4. Walcott, C. in Orientation in Birds (ed. Berthold, P.) 38–51 (Birkhauser, Boston, MA, 1991).

    Book  Google Scholar 

  5. Berthold, P. Bird Migration (Oxford Univ. Press, 1993).

    Google Scholar 

  6. Wallraff, H. G. Comp. Biochem. Physiol. 76A, 643–663 (1983).

    Article  Google Scholar 

  7. Meylan, A. B., Bowen, B. W. & Avise, J. C. Science 248, 724–727 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Bowen, B. W. et al. Conserv. Biol. 7, 834–844 (1993).

    Article  Google Scholar 

  9. Bowen, B. W. et al. Proc. natn. Acad. Sci. U.S.A. 92, 3731–3734 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Lohmann, K. J. & Lohmann, C. M. F. J. exp. Biol. 194, 23–32 (1994).

    CAS  PubMed  Google Scholar 

  11. Carr, A. The Sea Turtle: So Excellent a Fishe (University of Texas Press, Austin, 1986).

    Google Scholar 

  12. Carr, A. Copeia 3, 547–555 (1975).

    Article  Google Scholar 

  13. Carr, A. in Bio-Telemetry (ed. Slater, L. E.) 179–193 (MacMillan, New York, 1963).

    Google Scholar 

  14. Limpus, C. J. et al. Wildl. Res. 19, 347–358 (1992).

    Article  Google Scholar 

  15. Papi, R., Liew, H. C., Luschi, P. & Chan, E. H. Mar. Biol. 122, 171–175 (1995).

    Article  Google Scholar 

  16. Salmon, M. & Wyneken, J. Herp. nat. Hist. 2, 13–24 (1994).

    Google Scholar 

  17. Carr, A. Conserv. Bio. 1, 103–121 (1987).

    Article  Google Scholar 

  18. Carr, A. Bioscience 36, 92–100 (1986).

    Article  Google Scholar 

  19. Lohmann, K. J. J. exp. Biol. 155, 37–49 (1991).

    CAS  Google Scholar 

  20. Lohmann, K. J. & Lohmann, C. M. F. J. exp. Biol. 190, 1–8 (1994).

    CAS  PubMed  Google Scholar 

  21. Batschelet, E. Circular Statistics in Biology (Academic, London, 1981).

    MATH  Google Scholar 

  22. Dodd, C. K. Jr U.S. Fish Wildl. Serv. Biol. Rep. 88, 1–110 (1988).

    Google Scholar 

  23. Walker, M. M. & Bitterman, M. E. J. exp. Biol. 145, 489–494 (1989).

    Google Scholar 

  24. Klinowska, M. Aquat. Mamm. 1, 27–32 (1985).

    Google Scholar 

  25. Kirschvink, J. L., Dizon, A. E. & Westphal, J. A. J. exp. Biol. 120, 1–24 (1986).

    Google Scholar 

  26. Walker, M. M., Kirschvink, J. L., Ahmed, G. & Dizon, A. E. J. exp. Biol. 171, 67–78 (1992).

    CAS  PubMed  Google Scholar 

  27. U.S. Defense Mapping Agency Hydrographic/Topographic Center Magnetic Inclination of Dip, Epoch 1985.0 (U.S. Government Printing Office, Washington DC, 1985).

  28. U.S. Defense Mapping Agency Hydrographic/Topographic Center Total Intensity of the Earth's Magnetic Field, Epoch 1985.0 (U.S. Government Printing Office, Washington DC, 1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmann, K., Lohmann, C. Detection of magnetic field intensity by sea turtles. Nature 380, 59–61 (1996). https://doi.org/10.1038/380059a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380059a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing