Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals

Abstract

THE mechanisms through which synaptic vesicle membranes are reinternalized after exocytosis remain a matter of debate1–5. Because several vesicular transport steps require GTP hydrolysis6–9, GTP-γS may help identify intermediates in synaptic vesicle recycling. In GTP-γS-treated nerve terminals, we observed tubular invaginations of the plasmalemma that were often, but not always, capped by a clathrin-coated bud. Strikingly, the walls of these tubules were decorated by transverse electron-dense rings that were morphologically similar to structures formed by dynamin around tubular templates10,11. Dynamin is a GTPase implicated in synaptic vesicle endocytosis12–14 and here we show that the walls of these membranous tubules, but not their distal ends, were positive for dynamin immunoreactivity. These findings demonstrate that dynamin and clathrin act at different sites in the formation of endocytic vesicles. They strongly support a role for dynamin in the fission reaction and suggest that stabilization of the GTP-bound conformation of dynamin leads to tubule formation by progressive elongation of the vesicle stalk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Heuser, J. E. & Reese, T. S. J. Cell Biol. 57, 315–344 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ceccarelli, B., Hurlbut, W. P. & Mauro, A. J. Cell Biol. 57, 499–524 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fesce, R., Grohavaz, F., Valtorta, F. & Meldolesi, J. Trends Cell Biol. 4, 1–4 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. McPherson, P. S. & De Camilli, P. Semin. Neurosci. 6, 137–147 (1994).

    Article  CAS  Google Scholar 

  5. Mundigl, O. & De Camilli, P. Curr. Opin. Cell Biol. 6, 561–567 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Orci, L., Malhotra, V., Amherdt, M., Serafini, T. & Rothman, J. E. Cell 56, 357–368 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Ferro-Novick, S. & Novick, P. A. Rev. Cell Biol. 9, 575–599 (1993).

    Article  CAS  Google Scholar 

  8. Schmid, S. L. Trends Cell Biol. 3, 145–148 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Nuoffer, C. & Balch, W. E. A. Rev. Biochem. 63, 949–990 (1994).

    Article  CAS  Google Scholar 

  10. Shpetner, H. S. & Vallee, R. B. Cell 59, 421–432 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Maeda, K., Nakata, T., Noda, Y., Sato-Yashitake, R. & Hirokawa, N. Molec. Biol. Cell 3, 1181–1194 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Obar, R. A., Collins, C. A., Hammarback, J. A., Shpetner, H. S. & Vallee, R. B. Nature 347, 256–261 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Chen, M. S. et al. Nature 351, 583–586 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Van der Bliek, A. M. & Meyerowitz, E. M. Nature 351, 411–414 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Kosaka, T. & Ikeda, K. J. Neurobiol. 14, 207–225 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Koenig, J. H. & Ikeda, K. J. Neurosci. 9, 3844–3860 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramaswami, M., Krishnan, K. S. & Kelly, R. B. Neuron 13, 363–375 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Van der Bliek, A. M. et al. J. Cell Biol. 122, 553–563 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Herskovits, J. S., Burgess, C. C., Ober, R. A. & Vallee, R. B. J. Cell Biol. 122, 565–578 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Damke, H., Baba, T., Warnock, D. E. & Schmid, S. J. Cell Biol. 127, 915–934 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. McPherson, P. S., Takei, K., Schmid, S. L. & De Camilli, P. J. biol. Chem. 269, 30132–30139 (1994).

    CAS  PubMed  Google Scholar 

  22. Willingham, M. C. & Pastan, I. Proc. natn. Acad. Sci. U.S.A. 80, 5617–5621 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Robinson, M. S. Curr. Opin. Cell Biol. 6, 538–544 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Vallee, R. B. J. Muscle Res. Cell Motil. 13, 493–496 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Carter, L. L., Redelmeier, T. E., Woollenweber, L. A. & Schmid, S. L. J. Cell Biol. 120, 37–45 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Robinson, P. J. et al. Nature 365, 163–166 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Huttner, W. B., Schiebler, W., Greengard, P. & De Camilli, P. J. Cell Biol. 96, 1374–1388 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. McPherson, P. S. et al. Proc. natn. Acad. Sci. U.S.A. 91, 6486–6490 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Maycox, P. R., Link, E., Reetz, A., Morris, S. A. & Jahn, R. J. Cell Biol. 118, 1379–1388 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Takei, K. et al. J. Neurosci. 12, 489–505 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Camilli, P., Harris, S. M., Huttner, W. B. & Greengard, P. J. Cell Biol. 96, 1355–1373 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Navone, F. et al. J. Cell Biol. 103, 2511–2527 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. McPherson, P. S. & Campbell, K. P. J. biol. Chem. 265, 18454–18460 (1990).

    CAS  PubMed  Google Scholar 

  34. Robinson, M. S. J. Cell Biol. 104, 887–895 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Hinshaw, J. E. & Schmid, S. L. Nature 374, 190–192 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takei, K., McPherson, P., Schmid, S. et al. Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals. Nature 374, 186–190 (1995). https://doi.org/10.1038/374186a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374186a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing