Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transduction of temporal patterns by single neurons

Abstract

As our ability to communicate by Morse code illustrates, nervous systems can produce motor outputs, and identify sensory inputs, based on temporal patterning alone. Although this ability is central to a wide range of sensory and motor tasks, the ways in which nervous systems represent temporal patterns are not well understood. I show here that individual neurons of the lobster pyloric network can integrate rhythmic patterned input over the long times (hundreds of milliseconds) characteristic of many behaviorally relevant patterns, and that their firing delays vary as a graded function of the pattern's temporal character. These neurons directly transduce temporal patterns into a neural code, and constitute a novel biological substrate for temporal pattern detection and production. The combined activities of several such neurons can encode simple rhythmic patterns, and I provide a model illustrating how this could be achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four rhythmic patterns.
Figure 2: The pyloric network and rhythm.
Figure 3: Pyloric interneuronal delays shift as cycle period is altered.
Figure 4: Isolated PY neuron rebound delay depends on cycle period and duty cycle.
Figure 5: PY neuron rebound delays stabilize rapidly.
Figure 6: Coincidence detection among three pattern-sensitive neurons can be used to identify simple rhythmic patterns.

Similar content being viewed by others

References

  1. Treisman, M. Temporal discrimination and the indifference interval: implications for a model of the 'internal clock'. Psychol. Monographs 77, 1–31 (1963).

    Article  CAS  Google Scholar 

  2. Ivry, R. B. The representation of temporal information in perception and motor control. Curr. Opin. Neurobiol. 6, 851– 857 (1996).

    Article  CAS  Google Scholar 

  3. Treisman, M., Faulkner, A., Naish, P. L. N. & Brogan, D. The internal clock: evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception 19, 705–743 ( 1990).

    Article  CAS  Google Scholar 

  4. Treisman, M., Faulkner, A. & Naish, P. L. N. On the relation between time perception and the timing of motor action: evidence for a temporal oscillator controlling the timing of movement. Q. J. Exp. Psychol. 45, 235–263 (1992).

    Article  CAS  Google Scholar 

  5. Wang, D. in The Handbook of Brain Theory and Neural Networks (ed Arbib, M. A.) 967–971 (MIT Press, Cambridge, MA, 1995).

    Google Scholar 

  6. Buonomano, D. V. & Merzenich, M. M. Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267, 1028– 1030 (1995).

    Article  CAS  Google Scholar 

  7. Ivry, R. B. & Hazeltine, R. E. The perception and production of temporal intervals across a range of durations: evidence for a common timing mechanism. J. Exp. Psychol. Hum. Percept. Perform. 21, 1–12 (1995).

    Article  Google Scholar 

  8. Abbott, L. F., Marder, E. & Hooper, S. L. Oscillating networks: control of burst duration by electrically coupled neurons. Neural Computation 3, 487–497 (1991).

    Article  Google Scholar 

  9. De Koninck, P. & Schulman, H. Sensitivity of CaM kinase II to the frequency of Ca+2 oscillations. Science 279, 227–230 (1998).

    Article  CAS  Google Scholar 

  10. Rezer, E. & Moulins, M. Expression of the crustacean pyloric pattern generator in the intact animal. J. Comp. Physiol. A 153, 17–28 (1983).

    Article  Google Scholar 

  11. Sigvardt, K. A. & Mulloney, B. Properties of synapses made by IVN command-interneurones in the stomatogastric ganglion of the spiny lobster Panulirus interruptus. J. Exp. Biol. 97, 153–168 ( 1982).

    CAS  PubMed  Google Scholar 

  12. Nagy, F. & Dickinson, P. S. Control of a central pattern generator by an identified modulatory interneurone in crustacea. I. Modulation of the pyloric motor output. J. Exp. Biol. 105, 33–58 (1983).

    CAS  PubMed  Google Scholar 

  13. Beltz, B. et al. Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans (Homarus americanus, Cancer irroratus, and Panulirus interruptus). J. Exp. Biol. 109, 35–54 ( 1984).

    CAS  PubMed  Google Scholar 

  14. Eisen, J. S. & Marder, E. A mechanism for production of phase shifts in a pattern generator. J. Neurophysiol. 51, 1375–1393 (1984).

    Article  CAS  Google Scholar 

  15. Hooper, S. L. & Marder, E. Modulation of a central pattern generator by two neuropeptides, proctolin and FMRFamide. Brain Res. 305, 186–191 (1984).

    Article  CAS  Google Scholar 

  16. Flamm, R. E. & Harris-Warrick, R. M. Aminergic modulation in lobster stomatogastric ganglion. I. Effects on motor pattern and activity of neurons within the pyloric circuit. J. Neurophysiol. 55, 847–865 (1986).

    Article  CAS  Google Scholar 

  17. Harris-Warrick, R. M. & Flamm, R. E. Chemical modulation of a small central pattern generator circuit. Trends Neurosci. 9, 432–437 (1986).

    Article  CAS  Google Scholar 

  18. Hooper, S. L. & Marder, E. Modulation of the lobster pyloric rhythm by the peptide, proctolin. J. Neurosci. 7, 2097–2112 (1987).

    Article  CAS  Google Scholar 

  19. Nusbaum, M. P. & Marder, E. A neuronal role for a crustacean red pigment concentrating hormone-like peptide: neuromodulation of the pyloric rhythm in the crab, Cancer borealis. J. Exp. Biol. 135, 165–181 ( 1988).

    CAS  Google Scholar 

  20. Nusbaum, M. P. & Marder, E. A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J. Neurosci. 9, 1600–1607 (1989).

    Article  CAS  Google Scholar 

  21. Turrigiano, G. G. & Selverston, A. I. Cholecystokinin-like peptide is a modulator of a crustacean central pattern generator. J. Neurosci. 9, 2486–2501 (1989).

    Article  CAS  Google Scholar 

  22. Katz, P. S. & Harris-Warrick, R. M. Actions of identified neuromodulatory neurons in a simple motor system. Trends Neurosci . 13, 367–373 ( 1990).

    Article  CAS  Google Scholar 

  23. Turrigiano, G. G. & Selverston, A. I. A cholecystokinin-like hormone activates a feeding-related neural circuit in lobster. Nature 344, 866–868 ( 1990).

    Article  CAS  Google Scholar 

  24. Harris-Warrick, R. M. & Marder, E. Modulation of neural networks for behavior. Annu. Rev. Neurosci. 14, 39–57 (1991).

    Article  CAS  Google Scholar 

  25. Blitz, D. M., Christie, A. E., Marder, E. & Nusbaum, M. P. Distribution and effects of tachykinin-like peptides in the stomatogastric nervous system of the crab, Cancer borealis. J. Comp. Neurol . 354, 282–294 ( 1995).

    Article  CAS  Google Scholar 

  26. Norris, B. J., Coleman, M. J. & Nusbaum, M. P. Pyloric motor pattern modification by a newly identified projection neuron in the crab stomatogastric nervous system. J. Neurophysiol. 75, 97–108 (1996).

    Article  CAS  Google Scholar 

  27. Hooper, S. L. Phase maintenance in the pyloric pattern of the lobster (Panulirus interruptus ) stomatogastric ganglion. J. Computational Neurosci. 4, 191–205 (1997).

    Article  CAS  Google Scholar 

  28. Hooper, S. L. The pyloric pattern of the lobster (Panulirus interruptus) stomatogastric ganglion comprises two phase-maintaining subsets. J. Computational Neurosci. 4, 207–219 ( 1997).

    Article  CAS  Google Scholar 

  29. Selverston, A. I., Russell, D. F., Miller, J. P. & King, D. G. The stomatogastric nervous system: structure and function of a small neural network. Prog. Neurobiol. 7, 215– 290 (1976).

    Article  CAS  Google Scholar 

  30. Eisen, J. S. & Marder, E. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons III. Synaptic connections of electrically coupled pyloric neurons. J. Neurophysiol. 48, 1392– 1415 (1982).

    Article  CAS  Google Scholar 

  31. Russell, D. F. & Hartline, D. K. Bursting neural networks: A reexamination. Science 200, 453–456 (1978).

    Article  CAS  Google Scholar 

  32. Hartline, D. K. Pattern generation in the lobster (Panulirus) stomatogastric ganglion. II. Pyloric network simulation. Biol. Cybern. 33, 223–236 (1979).

    Article  CAS  Google Scholar 

  33. Miller, J. P. & Selverston, A. I. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons. J. Neurophysiol. 48, 1378–1391 (1982).

    Article  CAS  Google Scholar 

  34. Hartline, D. K., Gassie, D. V. & Sirchia, C. D. in The Crustacean Stomatogastric System (eds Selverston, A. I. & Moulins, M.) 75–77 (Springer, Berlin, 1987).

    Google Scholar 

  35. Golowasch, J. & Marder, E. Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. J. Neurophysiol . 67, 318–331 ( 1992).

    Article  CAS  Google Scholar 

  36. Tierney, A. J. & Harris-Warrick, R. M. Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. J. Neurophysiol. 67, 599–609 (1992).

    Article  CAS  Google Scholar 

  37. Harris-Warrick, R. M., Coniglio, L. M., Barazangi, N., Guckenheimer, J. & Gueron, S. Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J. Neurosci. 15, 342–358 (1995).

    Article  CAS  Google Scholar 

  38. Miller, J. P. & Selverston, A. I. Rapid killing of single neurons by irradiation of intracellularly injected dye. Science 206, 702–704 (1979).

    Article  CAS  Google Scholar 

  39. Bidaut, M. Pharmacological dissection of pyloric network of the lobster stomatogastric ganglion using picrotoxin. J. Neurophysiol. 44, 1089–1101 (1980).

    Article  CAS  Google Scholar 

  40. Miller, J. P. & Selverston, A. I. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system. J. Neurophysiol. 48, 1416–1432 (1982).

    Article  CAS  Google Scholar 

  41. LeMasson, G., Marder, E. & Abbott, L. F. Activity-dependent regulation of conductances in model neurons. Science 259, 1915– 1917 (1993).

    Article  CAS  Google Scholar 

  42. Turrigiano, G., Abbott, L. F. & Marder, E. Activity-dependent changes in the intrinsic properties of cultured neurons. Science 264, 974– 977 (1994).

    Article  CAS  Google Scholar 

  43. Turrigiano, G., LeMasson, G. & Marder, E. Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. J. Neurosci . 15, 3640–3652 ( 1995).

    Article  CAS  Google Scholar 

  44. Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z. & Golowasch, J. Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Acad. Sci. USA 93, 13481–13486 (1996).

    Article  CAS  Google Scholar 

  45. Maynard, D. M. & Dando, M. R. The structure of the stomatogastric neuromuscular system in Callinectes sapidus, Homarus americanus and Panulirus argus (decapoda crustacea). Phil. Trans. R. Soc. Lond. B Biol. Sci. 268, 161– 220 (1974).

    Article  CAS  Google Scholar 

  46. Konishi, M., Takahashi, T. T., Wagner, H., Sullivan, W. E. & Carr, C. E. in Auditory Function: Neurobiological Bases of Hearing (eds Edelman, G. M., Gall, W. E. & Cowan, W. M.) 721–745 (Wiley, New York, 1988).

    Google Scholar 

Download references

Acknowledgements

I thank R. A. DiCaprio, L. G. Morris and A. L. Weaver for reading the manuscript, discussion and advice, J. B. Thuma for technical assistance and H. L. Atwood for the donation of micromanipulators. This research was supported by grants from the National Science Foundation, the Human Frontier Science Program and Ohio University and its research council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Hooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooper, S. Transduction of temporal patterns by single neurons. Nat Neurosci 1, 720–726 (1998). https://doi.org/10.1038/3721

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3721

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing