Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Clock controls circadian period in isolated suprachiasmatic nucleus neurons

Abstract

The suprachiasmatic nucleus (SCN) is the master circadian pacemaker in mammals, and one molecular regulator of circadian rhythms is the Clock gene. Here we studied the discharge patterns of SCN neurons isolated from Clock mutant mice. Long-term, multielectrode recordings showed that heterozygous Clock mutant neurons have lengthened periods and that homozygous Clock neurons are arrhythmic, paralleling the effects on locomotor activity in the animal. In addition, cells in dispersals expressed a wider range of periods and phase relationships than cells in explants. These results suggest that the Clock gene is required for circadian rhythmicity in individual SCN cells and that a mechanism within the SCN synchronizes neurons and restricts the range of expressed circadian periods.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circadian rhythms in wheel-running activity for representative wild-type and Clock mutant mice.
Figure 2: Dispersed SCN cells express a range of circadian periods and phase relationships within the same culture on multielectrode plates.
Figure 3: Firing-rate patterns of dispersed SCN cells from wild-type and Clock mutant mice show that the Clock mutation affects period length in heterozygous SCN cells and period stability in homozygotes.
Figure 4: The Clock mutation lengthened the mean free-running period of SCN cells.
Figure 5: The range of circadian periods in wild-type SCN cells increases only after the normal tissue organization has been disrupted.

Similar content being viewed by others

References

  1. Pittendrigh, C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp. Quant. Biol. 25, 159– 182 (1960).

    Article  CAS  Google Scholar 

  2. Stephan, F. K. & Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 69, 1583– 1586 (1972).

    Article  CAS  Google Scholar 

  3. Moore, R. Y. & Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in rat. Brain Res. 42, 201–206 (1972).

    Article  CAS  Google Scholar 

  4. Ralph, M. R., Foster, R. G., Davis, F. C. & Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975–978 ( 1990).

    Article  CAS  Google Scholar 

  5. Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706 (1995).

    Article  CAS  Google Scholar 

  6. Shinohara, K., Honma, S., Katsuno, Y., Abe, H. & Honma, K. Two distinct oscillators in the rat suprachiasmatic nucleus in vitro. Proc. Natl. Acad. Sci. USA 92, 7396– 7400 (1995).

    Article  CAS  Google Scholar 

  7. Konopka, R. J. & Benzer, S. Clock mutants of Drosophila melanogaster . Proc. Natl. Acad. Sci. USA 68, 2112 –2116 (1971).

    Article  CAS  Google Scholar 

  8. Dunlap, J. C. Circadian rhythms: an end in the beginning. Science 280, 1548–1549 (1998).

    Article  CAS  Google Scholar 

  9. Price, J. L., Dembinska, M. E., Young, M. W. & Rosbash, M. Suppression of PERIOD protein abundance and circadian cycling by the Drosophila clock mutation timeless. EMBO J. 14, 4044–4049 (1995).

    Article  CAS  Google Scholar 

  10. Gekakis, N. et al. Isolation of timeless by PER protein interaction: Defective interaction between timeless protein and long-period mutant PERL. Science 270, 811– 815 (1995).

    Article  CAS  Google Scholar 

  11. Darlington, T. K. et al. Closing the circadian loop—CLOCK-induced transcription of its own inhibitors, PER and TIM. Science 280, 1599–1603 (1998).

    Article  CAS  Google Scholar 

  12. Allada, R., White, N. E., So, W. V., Hall, J. C. & Rosbash, M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791– 804 (1998).

    Article  CAS  Google Scholar 

  13. Rutila, J. E. et al. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless . Cell 93, 805–814 (1998).

    Article  CAS  Google Scholar 

  14. Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998).

    Article  CAS  Google Scholar 

  15. Kloss, B. et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell 94, 97–107 ( 1998).

    Article  CAS  Google Scholar 

  16. Price, J. L. et al. Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94 , 83–95 (1998).

    Article  CAS  Google Scholar 

  17. Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719 –725 (1994).

    Article  CAS  Google Scholar 

  18. King, D. P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 ( 1997).

    Article  CAS  Google Scholar 

  19. Antoch, M. P. et al. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89, 655– 667 (1997).

    Article  CAS  Google Scholar 

  20. Hogenesch, J. B., Gu, Y. Z., Jain, S. J. & Bradfield, C. A. The basic helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95, 5474–5479 ( 1998).

    Article  CAS  Google Scholar 

  21. Liu, C., Weaver, D. R., Strogatz, S. H. & Reppert, S. M. Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 91, 855–860 (1997).

    Article  CAS  Google Scholar 

  22. Herzog, E. D., Geusz, M. E., Khalsa, S. B., Straume, M. & Block, G. D. Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res. 757, 285–290 (1997).

    Article  CAS  Google Scholar 

  23. van den Pol, A. N. & Dudek, F. E. Cellular communication in the circadian clock, the suprachiasmatic nucleus. Neuroscience 56, 793–811 ( 1993).

    Article  CAS  Google Scholar 

  24. Reppert, S. M. & Schwartz, W. J. The suprachiasmatic nuclei of the fetal rat: characterization of a functional circadian clock using 14C-labeled deoxyglucose. J. Neurosci. 4, 1677–1682 (1984).

    Article  CAS  Google Scholar 

  25. Reppert, S. M. & Schwartz, W. J. Maternal coordination of the fetal biological clock in utero. Science 220 , 969–971 (1983).

    Article  CAS  Google Scholar 

  26. Schwartz, W. J., Gross, R. A. & Morton, M. T. The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc. Natl. Acad. Sci. USA 84, 1694–1698 (1987).

    Article  CAS  Google Scholar 

  27. Schwartz, W. J. Further evaluation of the tetrodotoxin-resistant circadian pacemaker in the suprachiasmatic nuclei. J. Biol. Rhythms 6, 149–158 (1991).

    Article  CAS  Google Scholar 

  28. Block, G. D., McMahon, D. G., Wallace, S. F. & Friesen, W. O. Cellular analysis of the Bulla ocular circadian pacemaker system: I. A model for retinal organization. J. Comp. Physiol. A 155, 365–378 (1984).

    Article  Google Scholar 

  29. Jacklet, J. W. & Colquhoun, W. Ultrastructure of photoreceptors and circadian pacemaker neurons in the eye of a gastropod, Bulla. J. Neurocytol. 12, 673– 696 (1983).

    Article  CAS  Google Scholar 

  30. Prosser, R. A., Edgar, D. M., Heller, H. C. & Miller, J. D. A possible glial role in the mammalian circadian clock. Brain Res. 643, 296–301 ( 1994).

    Article  CAS  Google Scholar 

  31. Jiang, Z. G., Yang, Y. Q. & Allen, C. N. Tracer and electrical coupling of rat suprachiasmatic nucleus neurons. Neuroscience 77, 1059– 1066 (1997).

    Article  CAS  Google Scholar 

  32. LeSauter, J., Lehman, M. N. & Silver, R. Restoration of circadian rhythmicity by transplants of SCN micropunches. J. Biol. Rhythms 11, 163–171 (1996).

    Article  CAS  Google Scholar 

  33. Murakami, N. et al. Long-term cultured neurons from rat suprachiasmatic nucleus retain the capacity for circadian oscillation of vasopressin release. Brain Res. 545, 347–350 (1991).

    Article  CAS  Google Scholar 

  34. Ding, J. M. et al. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713–1717 (1994).

    Article  CAS  Google Scholar 

  35. Watanabe, A., Hamada, T., Shibata, S. & Watanabe, S. Effects of nitric oxide synthase inhibitors on N-methyl-D-aspartate-induced phase delay of circadian rhythm of neuronal activity in the rat suprachiasmatic nucleus in vitro . Brain Res. 646, 161– 164 (1994).

    Article  CAS  Google Scholar 

  36. Nieoullon, A., Cheramy, A. & Glowinski, J. Release of dopamine in vivo from cat substantia nigra. Nature 266, 375–377 (1977).

    Article  CAS  Google Scholar 

  37. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929– 937 (1998).

    Article  CAS  Google Scholar 

  38. Yamazaki, S., Kerbeshian, M. C., Hocker, C. G., Block, G. D. & Menaker, M. Rhythmic properties of the hamster suprachiasmatic nucleus in vivo. J. Neurosci. (in press).

  39. Loudon, A. S. et al. Ultradian endocrine rhythms are altered by a circadian mutation in the Syrian hamster. Endocrinology 135, 712–718 (1994).

    Article  CAS  Google Scholar 

  40. Gross, G. W., Williams, A. N. & Lucas, J. H. Recording of spontaneous activity with photoetched microelectrode surfaces from mouse spinal neurons in culture. J. Neurosci. Methods 5, 13–22 (1982).

    Article  CAS  Google Scholar 

  41. Gross, G. W. & Schwalm, F. U. A closed flow chamber for long-term multichannel recording and optical monitoring. J. Neurosci. Methods 52, 73–85 ( 1994).

    Article  CAS  Google Scholar 

  42. Meister, M., Pine, J. & Baylor, D. A. Multi-neuronal signals from the retina: acquisition and analysis. J. Neurosci. Methods 51, 95 –106 (1994).

    Article  CAS  Google Scholar 

  43. Simon, J. Resampling: The New Statistics (Resampling Stats, Arlington, Virgina, 1995).

    Google Scholar 

Download references

Acknowledgements

We wish to thank David King for guidance in allele-specific genotyping, Martha Vitaterna and Sharon Low-Zeddies for providing mice, Naomi Ihara, Michael Menaker and Shin Yamazaki for assistance with behavioral assays, and Christine Harrer, Li Miao and John Williamson for technical assistance. We are also grateful to Martin Straume for statistical advice and to Tom Breeden for programming the data acquisition system. This work was supported by the NSF Center for Biological Timing and a NIH Endocrine Training grant to E.D.H. J.S.T. is an Investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik D. Herzog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, E., Takahashi, J. & Block, G. Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat Neurosci 1, 708–713 (1998). https://doi.org/10.1038/3708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing