Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells

Abstract

THE sense of smell is highly evolved in mammals, allowing discrimination between a vast number of odorants, with detection thresholds as low as 10−17M (ref. 1). Although several features of mammalian olfactory transduction have been revealed by biochemical and molecular biological studies2–11, the odorant-induced membrane current has remained elusive. In amphibians this current is mediated by cyclic-nucleotide-gated channels12–15, which depolarize the cell by Na+ and Ca+influx16,17 and consequent Cl- efflux through Ca2+-dependent Cl- channels18,19. The Cl- current may be absent in mammals, however, because its proposed role is linked to the aquatic habitat of amphibians18. Here we show that the transduction current in rat olfactory receptor cells is initiated by cyclic-nucleotide-gated channels. The Cl- current is also present and endows the transduction current with a steep sigmoidal dependence on cyclic AMP concentration in both rat and in an amphibian, indicating a new function for the Cl- channel: nonlinear amplification of the transduction signal, whereby suprathreshold responses are boosted relative to basal transduction noise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Passe, D. H. & Walker, J. C. Neurosci. Biobehav. Rev. 9, 431–467 (1985).

    Article  CAS  Google Scholar 

  2. Shirley, S. G., Robinson, J., Dickinson, K., Aujla, R. & Dodd, G. H. Biochem. J. 240, 605–607 (1986).

    Article  CAS  Google Scholar 

  3. Sklar, P. B., Anholt, R. R. H. & Snyder, S. H. J. biol. Chem. 261, 15538–15543 (1986).

    CAS  PubMed  Google Scholar 

  4. Jones, D. T. & Reed, R. R. Science 244, 790–795 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Bakalyar, H. A. & Reed, R. R. Science 250, 1403–1406 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Boekhoff, I., Tareilus, E., Strotmann, J. & Breer, H. EMBO J. 9, 2453–2458 (1990).

    Article  CAS  Google Scholar 

  7. Buck, L. & Axel, R. Cell 65, 175–187 (1991).

    Article  CAS  Google Scholar 

  8. Ronnett, G. V., Parfitt, D. J., Hester, L. D. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 88, 2366–2369 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Restrepo, D. et al. Am J. Physiol. 263, C667–673 (1992).

    Article  CAS  Google Scholar 

  10. Ben-Arie, N., Khen, M. & Lancet, D. Biochem. J. 292, 379–384 (1993).

    Article  CAS  Google Scholar 

  11. Raming, K. et al. Nature 361, 353–356 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Kurahashi, T. J. Physiol. 430, 355–371 (1990).

    Article  CAS  Google Scholar 

  13. Firestein, S., Zufall, F. & Shepherd, G. M. J. Neurosci. 11, 3565–3572 (1991).

    Article  CAS  Google Scholar 

  14. Frings, S. & Lindemann, B. J. gen. Physiol. 97, 1–16 (1991).

    Article  CAS  Google Scholar 

  15. Lowe, G. & Gold, G. H. J. Physiol. 462, 175–196 (1993).

    Article  CAS  Google Scholar 

  16. Kurahashi, T. J. Physiol. 419, 177–192 (1989).

    Article  CAS  Google Scholar 

  17. Kurahashi, T. & Shibuya, T. Brain Res. 515, 261–268 (1990).

    Article  CAS  Google Scholar 

  18. Kurahashi, T. & Yau, K.-W. Nature 363, 71–74 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Kleene, S. J. Neuron 11, 123–132 (1993).

    Article  CAS  Google Scholar 

  20. Breer, H. & Boekhoff, I. Chem. Senses 16, 19–29 (1991).

    Article  CAS  Google Scholar 

  21. Huque, T. & Bruch, R. C. Biochem. biophys. Res. commun. 137, 36–42 (1986).

    Article  CAS  Google Scholar 

  22. Firestein, S. & Werblin, F. Science 244, 79–82 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Nerbonne, J. M., Richard, S., Nargeot, J. & Lester, H. A. Nature 310, 74–76 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Nakamura, T. & Gold, G. H. Nature 325, 442–444 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Zufall, F., Hatt, H. & Firestein, S. Proc. natn. Acad. Sci. U.S.A. 90, 935–939 (1993).

    Article  Google Scholar 

  26. Firestein, S., Picco, C. & Menini, A. J. Physiol. 468, 1–10 (1993).

    Article  CAS  Google Scholar 

  27. Frings, S., Lynch, J. W. & Lindemann, B. J. gen. Physiol. 100, 45–67 (1992).

    Article  CAS  Google Scholar 

  28. Kleene, S. J. & Gesteland, R. C. J. Neurosci. 11, 3624–3629 (1991).

    Article  CAS  Google Scholar 

  29. Lynch, J. W. & Barry, P. H. Biophys. J. 55, 755–768 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Lowe, G. & Gold, G. H. J. Physiol. 442, 147–168 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowe, G., Gold, G. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366, 283–286 (1993). https://doi.org/10.1038/366283a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366283a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing