Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task

Abstract

PATIENTS with damage to the dorsolateral prefrontal cortex are impaired on cognitive tasks such as the Wisconsin Card Sort Test1, the Stroop Test2 and an anti-saccade paradigm3, in which sensory-guided habitual responses must be suppressed in favour of conceptually or memory-guided responses. We report here recordings from prefrontal neurons in rhesus monkeys trained to perform a delayed anti-saccade task based on tests that have been used with humans3. Activity in the same prefrontal neurons was recorded across conditions when saccades were made toward a remembered target, and also when this prepotent response was suppressed and a saccade in the opposite direction required. Our findings show that most prefrontal neurons code the location of the visual stimulus in working memory, and that this memory can be engaged to suppress as well as prescribe a response. These results establish, in a subset of prefrontal neurons, the iconic nature of the memory code, and suggest a role for visual memory in response suppression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Milner, B. Arch. Neural. 9, 90–100 (1963).

    Article  Google Scholar 

  2. Perret, E. Neuropsychologia 12, 323–330 (1974).

    Article  CAS  Google Scholar 

  3. Guitton, D., Buchtel, H. A. & Douglas, R. M. Expl Brain Res. 58, 455–472 (1985).

    Article  CAS  Google Scholar 

  4. Park, S. & Holzman, P. Arch. gen. Psychiat. 49, 975–982 (1993).

    Article  Google Scholar 

  5. Fukushima, J. et al. Biol. Psychiatry 23, 670–677 (1988).

    Article  CAS  Google Scholar 

  6. Thaker, G. K. et al. Psychopharmac. Bull. 25, 491–497 (1989).

    CAS  Google Scholar 

  7. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  Google Scholar 

  8. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. J. Neurophysiol. 63, 814–831 (1990).

    Article  CAS  Google Scholar 

  9. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. J. Neurophysiol. 65, 1464–1483 (1991).

    Article  CAS  Google Scholar 

  10. Bruce, C. J. & Goldberg, M. E. J. Neurophysiol. 53, 603–635 (1985).

    Article  CAS  Google Scholar 

  11. Gnadt, J. W. & Andersen, R. A. Expl Brain Res. 70, 216–220 (1988).

    CAS  Google Scholar 

  12. Alexander, G. E. & Crutcher, M. D. J. Neurophysiol. 64, 164–178 (1990).

    Article  CAS  Google Scholar 

  13. Mays, L. E. & Sparks, D. L. J. Neurophysiol. 43, 207–232 (1980).

    Article  CAS  Google Scholar 

  14. Barbas, H. & Mesulam, M-M. J. comp. Neurol. 200, 407–431 (1981).

    Article  CAS  Google Scholar 

  15. Cavada, C. & Goldman-Rakic, P. S. J. comp. Neurol. 287, 422–445 (1989).

    Article  CAS  Google Scholar 

  16. McGuire, P. K., Bates, J. F. & Goldman-Rakic, P. S. Cereb. Cortex 1, 390–407 (1991).

    Article  CAS  Google Scholar 

  17. Goldman, P. S. & Nauta, W. J. H. Brain Res. 116, 145–149 (1976).

    Article  CAS  Google Scholar 

  18. Fries, W. J. comp. Neurol. 230, 55–76 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Barbas, H. & Pandya, D. N. J. comp. Neurol. 256, 211–228 (1987).

    Article  CAS  Google Scholar 

  20. Selemon, L. D. & Goldman-Rakic, P. S. J. Neurosci. 5, 776–794 (1985).

    Article  CAS  Google Scholar 

  21. Niki, H. & Watanabe, M. Brain Res. 105, 79–88 (1976).

    Article  CAS  Google Scholar 

  22. Baddeley, A. D. & Hitch, G. in The Psychology of Learning and Motivation Vol. 8 (ed. Bower, G. H.) 47–90 (Academic, New York, 1974).

    Google Scholar 

  23. Boch, R. A. & Goldberg, M. E. J. Neurophysiol. 61, 1064–1084 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funahashi, S., Chafee, M. & Goldman-Rakic, P. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–756 (1993). https://doi.org/10.1038/365753a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365753a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing