Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The representation of visual salience in monkey parietal cortex

Abstract

When natural scenes are viewed, a multitude of objects that are stable in their environments are brought in and out of view by eye movements. The posterior parietal cortex is crucial for the analysis of space, visual attention and movement1. Neurons in one of its subdivisions, the lateral intraparietal area (LIP), have visual responses to stimuli appearing abruptly at particular retinal locations (their receptive fields)2. We have tested the responses of LIP neurons to stimuli that entered their receptive field by saccades. Neurons had little or no response to stimuli brought into their receptive field by saccades, unless the stimuli were behaviourally significant. We established behavioural significance in two ways: either by making a stable stimulus task-relevant, or by taking advantage of the attentional attraction of an abruptly appearing stimulus. Our results show that under ordinary circumstances the entire visual world is only weakly represented in LIP. The visual representation in LIP is sparse, with only the mostsalient or behaviourally relevant objects being strongly represented.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of a recent onset on responses of one neuron.
Figure 2: Responses of one neuron during the stable-target task.
Figure 3: a, No-target task.

Similar content being viewed by others

References

  1. Andersen, R. & Gnadt, J. W. in The Neurobiology of Saccadic Eye Movements, Reviews of Oculomotor Research Vol. III(eds Wurtz, R. H. & Goldberg, M. E.) 315–336 (Elsevier, Amsterdam, 1989).

    Google Scholar 

  2. Andersen, R. A., Brotchie, P. R. & Mazzoni, P. Evidence for the lateral intraparietal areas as the parietal eye field. Curr. Opin. Neurobiol. 2, 840–846 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Duhamel, J.-R., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Yantis, S. Attentional Capture in Vision (American Psychological Association, Washington DC, 1996).

    Book  Google Scholar 

  5. Colby, C. L., Duhamel, J.-R. & Goldberg, M. E. Visual, presaccadic and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Livingstone, M. S., Freedman, D. C. & Hubel, D. H. Visual responses in V1 of freely viewing monkeys. Cold Spring Harb. Symp. Quant. Biol. 61, 27–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Burman, D. D. & Segraves, M. A. Primate frontal eye field activity during natural scanning eye movements. J. Neurophysiol. 71, 1266–1271 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Lynch, J. C., Graybiel, A. M. & Lobeck, L. J. The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J. Comp. Neurol. 235, 241–254 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Blatt, G. J., Andersen, R. A. & Stoner, G. R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp. Neurol. 299, 421–445 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Stanton, G. B., Bruce, C. J. & Goldberg, M. E. Topography of projections to posterior cortical areas from the macaque frontal eye fields. J. Comp. Neurol. 353, 291–305 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Koch, C. & Ullman, S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985).

    CAS  PubMed  Google Scholar 

  13. Rao, R., Zelinsky, G., Hayhoe, M. & Ballard, D. Modelling saccade targeting in visual searchin Advances in Neural Information Processing Systems 8 (eds Touretsky, D., Mozer, M. & Hasselmo, M.) (MIT Press, Cambridge, MA, 1996).

  14. Wolfe, J. M. Guided Search 2.0: a revised model of visual search. Psychonom. Bull. Rev. 1, 202–238 (1994).

    Article  CAS  Google Scholar 

  15. Treisman, A. The binding problem. Curr. Opin. Neurobiol. 6, 171–178 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Irwin, D. E. Integrating information across saccadic eye movements. Curr. Direct. Psychol. Sci. 5, 94–100 (1996).

    Article  Google Scholar 

  17. Baizev, J. S., Ungerleider, L. G. & Desimone, Z. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J. Neurosci. 11, 168–190 (1991).

    Article  Google Scholar 

  18. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 183–222 (1995).

    Article  Google Scholar 

  19. Hays, A. V., Richmond, B. J. & Optican, L. M. AUNIX-based multiple process system for real-time data acquisition and control. WESCON Conf. Proc. 2, 1–10 (1982).

    Google Scholar 

  20. Gnadt, J. W. & Andersen, R. A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220 (1988).

    CAS  PubMed  Google Scholar 

  21. Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Andersen, R. A. Saccade-related activity in the lateral intraparietal area. I. Temporal properties. J. Neurophysiol. 66, 1095–1108 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Richmond, B. J. & Optican, L. M. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex: II. Quantification of response waveform. J. Neurophysiol. 57, 147–161 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Edelman, M. Basso, K. Powell, R. Krauzlis and M. Sommer for discussions of the manuscript; the staff of the Laboratory of Sensorimotor Research for help; D. Arends and B. Keegan for animal care; N. Nichols and T. Ruffner for technical assistance; J. McClurkin for the visual display software; L. Jensen for electronics; A. Hays for computer systems; J. Raber for veterinary care; the Laboratory of Diagnostic Radiology Research for roviding MRI services; and J. Steinberg and R.Harvey for facilitating this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Goldberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottlieb, J., Kusunoki, M. & Goldberg, M. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998). https://doi.org/10.1038/35135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35135

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing