Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

mDia mediates Rho-regulated formation and orientation of stable microtubules

Abstract

Rho-GTPase stabilizes microtubules that are oriented towards the leading edge in serum-starved 3T3 fibroblasts through an unknown mechanism. We used a Rho-effector domain screen to identify mDia as a downstream Rho effector involved in microtubule stabilization. Constitutively active mDia or activation of endogenous mDia with the mDia-autoinhibitory domain stimulated the formation of stable microtubules that were capped and oriented towards the wound edge. mDia co-localized with stable microtubules when overexpressed and associated with microtubules in vitro. Rho kinase was not necessary for the formation of stable microtubules. Our results show that mDia is sufficient to generate and orient stable microtubules, and indicate that Dia-related formins are part of a conserved pathway that regulates the dynamics of microtubule ends.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of Glu microtubules in serum-starved 3T3 cells by Rho-effector domain mutants.
Figure 2: Active mDia induces the formation of Glu microtubules.
Figure 3: Glu microtubules induced by LPA and DAD are resistant to growth and nocodazole depolymerization.
Figure 4: mDia2 associates with microtubules in vivo and in vitro.
Figure 5: tRokα expression generates perinuclear Glu microtubules, whereas tRokα/DAD co-expression generates extended and oriented Glu microtubules.
Figure 6: Rho-kinase activity is not required for Glu-microtubule induction.
Figure 7

Similar content being viewed by others

References

  1. Vasiliev, J. M. & Gelfand, I. M. Effects of colcemid on morphogenetic processes and locomotion in fibroblasts. Cold Spring Harbor Conf. Cell Proliferation 3, 279–304 (1976).

    Google Scholar 

  2. Gundersen, G. G. & Cook, T. A. Microtubules and signal transduction. Curr. Opin. Cell Biol. 11, 81–94 (1999).

    Article  CAS  Google Scholar 

  3. Cole, N. B. & Lippincott-Schwartz, J. Organization of organelles and membrane traffic by microtubules. Curr. Opin. Cell Biol. 7, 55–64 (1995).

    Article  CAS  Google Scholar 

  4. Saxton, W. M. et al. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99, 2175–2186 (1984).

    Article  CAS  Google Scholar 

  5. Schulze, E. & Kirschner, M. Microtubule dynamics in interphase cells. J. Cell Biol. 102, 1020–1031 (1986).

    Article  CAS  Google Scholar 

  6. Webster, D. R., Gundersen, G. G., Bulinski, J. C. & Borisy, G. G. Differential turnover of tyrosinated and detyrosinated microtubules. Proc. Natl Acad. Sci. USA 84, 9040–9044 (1987).

    Article  CAS  Google Scholar 

  7. Bulinski, J. C. & Gundersen, G. G. Stabilization and post-translational modification of microtubules during cellular morphogenesis. Bioessays 13, 285–293 (1991).

    Article  CAS  Google Scholar 

  8. Idriss, H. Man to trypanosome: the tubulin tyrosination/detyrosination cycle revisited. Cell Motil. Cytoskeleton 45, 173–184 (2000).

    Article  CAS  Google Scholar 

  9. Gundersen, G. G., Kalnoski, M. H. & Bulinski, J. C. Distinct populations of microtubules: tyrosinated and nontyrosinated α-tubulin are distributed differently in vivo. Cell 38, 779–789 (1984).

    Article  CAS  Google Scholar 

  10. Gurland, G. & Gundersen, G. G. Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J. Cell Biol. 131, 1275–1290 (1995).

    Article  CAS  Google Scholar 

  11. Kreitzer, G., Liao, G. & Gundersen, G. G. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell 10, 1105–1118 (1999).

    Article  CAS  Google Scholar 

  12. Liao, G. & Gundersen, G. G. Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J. Biol. Chem. 273, 9797–9803 (1998).

    Article  CAS  Google Scholar 

  13. Larcher, J. C., Boucher, D., Lazereg, S., Gros, F. & Denoulet, P. Interaction of kinesin motor domains with α- and β-tubulin subunits at a Tau-independent binding site. J. Biol. Chem. 271, 22117–22124 (1996).

    Article  CAS  Google Scholar 

  14. Khawaja, S., Gundersen, G. G. & Bulinski, J. C. Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J. Cell Biol. 106, 141–149 (1988).

    Article  CAS  Google Scholar 

  15. Webster, D. R., Wehland, J., Weber, K. & Borisy, G. G. Detyrosination of α-tubulin does not stabilize microtubules in vivo. J. Cell Biol. 111, 113–122 (1990); erratum: J. Cell Biol. 111, 1325–1326 (1990).

    Article  CAS  Google Scholar 

  16. Cook, T. A., Nagasaki, T. & Gundersen, G. G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol. 141, 175–185 (1998).

    Article  CAS  Google Scholar 

  17. Gundersen, G. G., Kim, I. & Chapin, C. J. Induction of stable microtubules in 3T3 fibroblasts by TGF-β and serum. J. Cell Sci. 107, 645–659 (1994).

    CAS  Google Scholar 

  18. Nagasaki, T. & Gundersen, G. G. Depletion of lysophosphatidic acid triggers a loss of oriented detyrosinated microtubules in motile fibroblasts. J. Cell Sci. 109, 2461–2469 (1996).

    CAS  Google Scholar 

  19. Best, A., Ahmed, S., Kozma, R. & Lim, L. The Ras-related GTPase Rac1 binds tubulin. J. Biol. Chem. 271, 3756–3762 (1996).

    Article  CAS  Google Scholar 

  20. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. Embo J. 16, 3044–3056 (1997).

    Article  CAS  Google Scholar 

  21. Alberts, A. S., Bouquin, N., Johnston, L. H. & Treisman, R. Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G-protein β-subunits and the yeast response regulator protein Skn7. J. Biol. Chem. 273, 8616–8622 (1998).

    Article  CAS  Google Scholar 

  22. Castrillon, D. H. & Wasserman, S. A. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120, 3367–3377 (1994).

    CAS  Google Scholar 

  23. Harris, S. D., Hamer, L., Sharpless, K. E. & Hamer, J. E. The Aspergillus nidulans sepA gene encodes an FH1/2 protein involved in cytokinesis and the maintenance of cellular polarity. Embo J. 16, 3474–3483 (1997).

    Article  CAS  Google Scholar 

  24. Zahner, J. E., Harkins, H. A. & Pringle, J. R. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 16, 1857–1870 (1996).

    Article  CAS  Google Scholar 

  25. Lee, L., Klee, S. K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144, 947–961 (1999).

    Article  CAS  Google Scholar 

  26. Adames, N. R. & Cooper, J. A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 149, 863–874 (2000).

    Article  CAS  Google Scholar 

  27. Ishizaki, T. et al. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nature Cell Biol. 3, 8–14 (2001).

    Article  CAS  Google Scholar 

  28. Tominaga, T. et al. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol. Cell 5, 13–25 (2000).

    Article  CAS  Google Scholar 

  29. Bione, S. et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am. J. Hum. Genet. 62, 533–541 (1998).

    Article  CAS  Google Scholar 

  30. Lynch, E. D. et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278, 1315–1318 (1997).

    Article  CAS  Google Scholar 

  31. Sahai, E., Alberts, A. S. & Treisman, R. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. Embo J. 17, 1350–1361 (1998).

    Article  CAS  Google Scholar 

  32. Wasserman, S. FH proteins as cytoskeletal organizers. Trends Cell Biol. 8, 111–115 (1998).

    Article  CAS  Google Scholar 

  33. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999).

    Article  CAS  Google Scholar 

  34. Nakano, K. et al. Distinct actions and cooperative roles of ROCK and mDia in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby canine kidney cells. Mol. Biol. Cell 10, 2481–2491 (1999).

    Article  CAS  Google Scholar 

  35. Tominaga, T., Ishizaki, T., Narumiya, S. & Barber, D. L. p160ROCK mediates RhoA activation of Na-H exchange. Embo J. 17, 4712–4722 (1998).

    Article  CAS  Google Scholar 

  36. Alberts, A. S. Identification of a carboxy-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. (2001).

  37. Gotlieb, A. I., May, L. M., Subrahmanyan, L. & Kalnins, V. I. Distribution of microtubule organizing centres in migrating sheets of endothelial cells. J. Cell Biol. 91, 589–594 (1981).

    Article  CAS  Google Scholar 

  38. Gundersen, G. G. & Bulinski, J. C. Selective stabilization of microtubules oriented towards the direction of cell migration. Proc. Natl Acad. Sci. USA 85, 5946–5950 (1988).

    Article  CAS  Google Scholar 

  39. Infante, A. S., Stein, M., Zhai, Y., Borisy, G. & Gundersen, G. G. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J. Cell Sci. 113, 3907–3919 (2000).

    CAS  Google Scholar 

  40. Leung, T., Manser, E., Tan, L. & Lim, L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270, 29051–29054 (1995).

    Article  CAS  Google Scholar 

  41. Leung, T., Chen, X. Q., Manser, E. & Lim, L. The p160 RhoA-binding kinase ROK-α is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell Biol. 16, 5313–5327 (1996).

    Article  CAS  Google Scholar 

  42. Ishizaki, T. et al. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett. 404, 118–124 (1997).

    Article  CAS  Google Scholar 

  43. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  Google Scholar 

  44. Chang, F. Movement of a cytokinesis factor cdc12p to the site of cell division. Curr. Biol. 12, 849–852 (1999).

    Article  Google Scholar 

  45. Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260–2262 (2000).

    Article  CAS  Google Scholar 

  46. Mimori-Kiyosue, Y., Shiina, N. & Tsukita, S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865–868 (2000).

    Article  CAS  Google Scholar 

  47. Sin, W. C., Chen, X. Q., Leung, T. & Lim, L. RhoA-binding kinase alpha translocation is facilitated by the collapse of the vimentin intermediate filament network. Mol. Cell Biol. 18, 6325–6339 (1998).

    Article  CAS  Google Scholar 

  48. Mikhailov, A. V. & Gundersen, G. G. Centripetal transport of microtubules in motile cells. Cell Motil. Cytoskeleton 32, 173–186 (1995).

    Article  CAS  Google Scholar 

  49. Kilmartin, J. V., Wright, B. & Milstein, C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol. 93, 576–582 (1982).

    Article  CAS  Google Scholar 

  50. Lessard, J. L. Two monoclonal antibodies to actin: one muscle selective and one generally reactive. Cell Motil. Cytoskeleton 10, 349–362 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Liem and J. Lessard for providing antibodies, and R. Treisman, L. Lim and K. Kaibuchi for providing DNA constructs. We thank F. Chang for helpful suggestions about mDia. This work was supported by grants from the A.C.S. and the N.I.H. (to G.G.G.). A.F.P. was supported by a fellowship from the Fonds de la Recherche en Santé du Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg G. Gundersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palazzo, A., Cook, T., Alberts, A. et al. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 3, 723–729 (2001). https://doi.org/10.1038/35087035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35087035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing